<< Chapter < Page Chapter >> Page >
The figure shows a slender arrow pointing out of the page and to the right; it is labeled direction of ray (of propagation). At a point on this ray, eight bold arrows point in different directions, perpendicularly away from the ray. These arrows are labeled E.
The slender arrow represents a ray of unpolarized light. The bold arrows represent the direction of polarization of the individual waves composing the ray. Since the light is unpolarized, the arrows point in all directions.
The figure shows a slender arrow pointing out of the page and to the right that is labeled direction of ray. At the left end of the ray are eight blue arrows emanating from a point on the ray. These arrows are all in a plane perpendicular to the ray and are symmetrically oriented in the perpendicular plane. They are labeled E. Farther to the right on the same ray is a thin rectangle labeled polarizing filter that is in the plane perpendicular to the ray. This filter has seven vertical lines that are equally spaced on its surface. It also has a vertical double headed arrow on its surface that is labeled axis. Still farther along the ray is a single blue double headed arrow oriented vertically that is labeled E and direction of polarization.
A polarizing filter has a polarization axis that acts as a slit passing through electric fields parallel to its direction. The direction of polarization of an EM wave is defined to be the direction of its electric field.

[link] shows the effect of two polarizing filters on originally unpolarized light. The first filter polarizes the light along its axis. When the axes of the first and second filters are aligned (parallel), then all of the polarized light passed by the first filter is also passed by the second. If the second polarizing filter is rotated, only the component of the light parallel to the second filter’s axis is passed. When the axes are perpendicular, no light is passed by the second.

This figure has four subfigures. The first three are schematics and the last is a photograph. The first schematic looks much as in the previous figure, except that there is a second polarizing filter on the axis after the first one. The second polarizing filter has its lines aligned parallel to those of the first polarizing filter (i e, vertical). The vertical double headed arrow labeled E that emerges from the first polarizing filter also passes through the second polarizing filter. The next schematic is similar to the first, except that the second polarizing filter is rotated at forty five degrees with respect to the first polarizing filter. The double headed arrow that emerges from this second filter is also oriented at this same angle. It is also noticeably shorter than the other double headed arrows. The third schematic shows the same situation again, except that the second polarizing filter is now rotated ninety degrees with respect to the first polarizing filter. This time, there is no double headed arrow at all after the second polarizing filter. Finally, the last subfigure shows a photo of three circular optical filters placed over a bright colorful pattern. Two of these filters are place next to each other and the third is placed on top of the other two so that the center of the third is at the point where the edges of the two filters underneath touch. Some light passes through where the upper filter overlaps the left-hand underneath filter. Where the upper filter overlaps the right-hand lower filter, no light passes through.
The effect of rotating two polarizing filters, where the first polarizes the light. (a) All of the polarized light is passed by the second polarizing filter, because its axis is parallel to the first. (b) As the second is rotated, only part of the light is passed. (c) When the second is perpendicular to the first, no light is passed. (d) In this photograph, a polarizing filter is placed above two others. Its axis is perpendicular to the filter on the right (dark area) and parallel to the filter on the left (lighter area). (credit: P.P. Urone)
This schematic is another variation of the schematic first introduced two figures prior. To the left of the vertically oriented polarizing filter is a double headed blue arrow oriented in the plane perpendicular to the propagation direction and at an angle theta with the vertical. After the polarizing filter a smaller vertical double headed arrow appears, which is labeled E cosine theta.
A polarizing filter transmits only the component of the wave parallel to its axis, E cos θ size 12{E"cos"θ} {} , reducing the intensity of any light not polarized parallel to its axis.

Polarization by reflection

By now you can probably guess that Polaroid sunglasses cut the glare in reflected light because that light is polarized. You can check this for yourself by holding Polaroid sunglasses in front of you and rotating them while looking at light reflected from water or glass. As you rotate the sunglasses, you will notice the light gets bright and dim, but not completely black. This implies the reflected light is partially polarized and cannot be completely blocked by a polarizing filter.

[link] illustrates what happens when unpolarized light is reflected from a surface. Vertically polarized light is preferentially refracted at the surface, so that the reflected light is left more horizontally polarized . The reasons for this phenomenon are beyond the scope of this text, but a convenient mnemonic for remembering this is to imagine the polarization direction to be like an arrow. Vertical polarization would be like an arrow perpendicular to the surface and would be more likely to stick and not be reflected. Horizontal polarization is like an arrow bouncing on its side and would be more likely to be reflected. Sunglasses with vertical axes would then block more reflected light than unpolarized light from other sources.

The schematic shows a block of glass in air. A ray labeled unpolarized light starts at the upper left and impinges on the center of the block. Centered on this ray is a symmetric star burst pattern of double headed arrows. From this point where this ray hits the glass block there emerges a reflected ray that goes up and to the right and a refracted ray that goes down and to the right. Both of these rays are labeled partially polarized light. The reflected ray has evenly spaced large black dots on it that are labeled perpendicular to plane of paper. Centered on each black dot is a double headed arrow that is rather short and is perpendicular to the ray. The refracted ray also has evenly spaced dots, but they are much smaller. Centered on each of these small black dots are quite large doubled headed arrows that are perpendicular to the refracted ray.
Polarization by reflection. Unpolarized light has equal amounts of vertical and horizontal polarization. After interaction with a surface, the vertical components are preferentially absorbed or refracted, leaving the reflected light more horizontally polarized. This is akin to arrows striking on their sides bouncing off, whereas arrows striking on their tips go into the surface.
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics with linear momentum. OpenStax CNX. Aug 11, 2016 Download for free at http://legacy.cnx.org/content/col11960/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics with linear momentum' conversation and receive update notifications?

Ask