<< Chapter < Page Chapter >> Page >

Capillary action

The tendency of a fluid to be raised or suppressed in a narrow tube, or capillary tube, is called capillary action.

If a capillary tube is placed vertically into a liquid, as shown in [link] , capillary action will raise or suppress the liquid inside the tube depending on the combination of substances. The actual effect depends on the relative strength of the cohesive and adhesive forces and, thus, the contact angle θ size 12{θ} {} given in the table. If θ size 12{θ} {} is less than 90º , then the fluid will be raised; if θ size 12{θ} {} is greater than 90º , it will be suppressed. Mercury, for example, has a very large surface tension and a large contact angle with glass. When placed in a tube, the surface of a column of mercury curves downward, somewhat like a drop. The curved surface of a fluid in a tube is called a meniscus . The tendency of surface tension is always to reduce the surface area. Surface tension thus flattens the curved liquid surface in a capillary tube. This results in a downward force in mercury and an upward force in water, as seen in [link] .

Mercury kept in a container into which a narrow tube is inserted lowers its level inside the tube relative to the level in the rest of the container. In a similar situation, water rises in the tube so that the water level in the tube is above the water level in the rest of the container. This phenomenon is due to the large contact angle of mercury with glass and the smaller contact angle of water with glass.
(a) Mercury is suppressed in a glass tube because its contact angle is greater than 90º . Surface tension exerts a downward force as it flattens the mercury, suppressing it in the tube. The dashed line shows the shape the mercury surface would have without the flattening effect of surface tension. (b) Water is raised in a glass tube because its contact angle is nearly . Surface tension therefore exerts an upward force when it flattens the surface to reduce its area.

Contact angles of some substances
Interface Contact angle Θ
Mercury–glass 140 º size 12{"140"°} {}
Water–glass 0 º size 12{0°} {}
Water–paraffin 107 º size 12{"107"°} {}
Water–silver 90 º size 12{"90"°} {}
Organic liquids (most)–glass 0 º size 12{0°} {}
Ethyl alcohol–glass 0 º size 12{0°} {}
Kerosene–glass 26 º size 12{"26"°} {}

Capillary action can move liquids horizontally over very large distances, but the height to which it can raise or suppress a liquid in a tube is limited by its weight. It can be shown that this height h size 12{h} {} is given by

h = cos θ ρ gr . size 12{h= { {2γ" cos"θ} over {ρ ital "gr"} } } {}

If we look at the different factors in this expression, we might see how it makes good sense. The height is directly proportional to the surface tension γ size 12{γ} {} , which is its direct cause. Furthermore, the height is inversely proportional to tube radius—the smaller the radius r , the higher the fluid can be raised, since a smaller tube holds less mass. The height is also inversely proportional to fluid density ρ , since a larger density means a greater mass in the same volume. (See [link] .)

The left image shows liquid in a container with four tubes of progressively smaller diameter inserted into the liquid. The liquid rises higher in the smaller-diameter tubes. The right image shows two containers, one holding a dense liquid and the other holding a less-dense liquid. Identical tubes are inserted into each liquid. The less-dense liquid rises higher in its tube than the more-dense liquid does in its tube.
(a) Capillary action depends on the radius of a tube. The smaller the tube, the greater the height reached. The height is negligible for large-radius tubes. (b) A denser fluid in the same tube rises to a smaller height, all other factors being the same.

Calculating radius of a capillary tube: capillary action: tree sap

Can capillary action be solely responsible for sap rising in trees? To answer this question, calculate the radius of a capillary tube that would raise sap 100 m to the top of a giant redwood, assuming that sap’s density is 1050 kg /m 3 size 12{"1050"`"kg/m" rSup { size 8{3} } } {} , its contact angle is zero, and its surface tension is the same as that of water at 20.0º C .


The height to which a liquid will rise as a result of capillary action is given by h = cos θ ρ gr size 12{h= { {2γ" cos"θ} over {ρ ital "gr"} } } {} , and every quantity is known except for r size 12{r} {} .


Solving for r size 12{r} {} and substituting known values produces

r = cos θ ρ gh = 2 0.0728 N/m cos 1050 kg/m 3 9 . 80 m/s 2 100 m = 1.41 × 10 7 m. alignl { stack { size 12{r= { {2γ" cos"θ} over {ρ ital "gh"} } = { {2 left (0 "." "0728"`"N/m" right ) left (1 right )} over { left ("1050"`"kg/m" rSup { size 8{3} } right ) left (9 "." "80"`"m/s" rSup { size 8{2} } right ) left ("100"`m right )} } } {} #" "=1 "." "42" times "10" rSup { size 8{ - 7} } `m "." {} } } {}


This result is unreasonable. Sap in trees moves through the xylem , which forms tubes with radii as small as 2 . 5 × 10 5 m size 12{2 "." 5 times "10" rSup { size 8{ - 5} } `m} {} . This value is about 180 times as large as the radius found necessary here to raise sap 100 m size 12{"100"`m} {} . This means that capillary action alone cannot be solely responsible for sap getting to the tops of trees.

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
How we can toraidal magnetic field
Aditya Reply
How we can create polaidal magnetic field
Mykayuh Reply
Because I'm writing a report and I would like to be really precise for the references
Gre Reply
where did you find the research and the first image (ECG and Blood pressure synchronized)? Thank you!!
Gre Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play

Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?