# 1.7 Machine learning lecture 8

MachineLearning-Lecture08

Instructor (Andrew Ng) :Okay. Good morning. Welcome back. If you haven’t given me the homework yet, you can just give it to me at the end of class. That’s fine. Let’s see. And also just a quick reminder – I’ve actually seen project proposals start to trickle in already, which is great. As a reminder, project proposals are due this Friday, and if any of you want to meet and chat more about project ideas, I also have office hours immediately after lecture today. Are there any questions about any of that before I get started today? Great.

Okay. Welcome back. What I want to do today is wrap up our discussion on support vector machines and in particular we’ll also talk about the idea of kernels and then talk about [inaudible] and then I’ll talk about the SMO algorithm, which is an algorithm for solving the optimization problem that we posed last time.

To recap, we wrote down the following context optimization problem. All this is assuming that the data is linearly separable, which is an assumption that I’ll fix later, and so with this optimization problem, given a training set, this will find the optimal margin classifier for the data set that maximizes this geometric margin from your training examples.

And so in the previous lecture, we also derived the dual of this problem, which was to maximize this. And this is the dual of our primal [inaudible] optimization problem. Here, I’m using these angle brackets to denote inner product, so this is just XI transpose XJ for vectors XI and XJ. We also worked out the ways W would be given by sum over I alpha I YI XI.

Therefore, when you need to make a prediction of classification time, you need to compute the value of the hypothesis applied to an [inaudible], which is G of W transpose X plus B where G is that threshold function that outputs plus one and minus one. And so this is G of sum over I alpha I. So that can also be written in terms of inner products between input vectors X.

So what I want to do is now talk about the idea of kernels, which will make use of this property because it turns out you can take the only dependers of the algorithm on X is through these inner products. In fact, you can write the entire algorithm without ever explicitly referring to an X vector [inaudible] between input feature vectors. And the idea of a high kernel is as following – let’s say that you have an input attribute. Let’s just say for now it’s a real number. Maybe this is the living area of a house that you’re trying to make a prediction on, like whether it will be sold in the next six months.

Quite often, we’ll take this feature X and we’ll map it to a richer set of features. So for example, we will take X and map it to these four polynomial features, and let me acutely call this mapping Phi. So we’ll let Phi of X denote the mapping from your original features to some higher dimensional set of features.

So if you do this and you want to use the features Phi of X, then all you need to do is go back to the learning algorithm and everywhere you see XI, XJ, we’ll replace it with the inner product between Phi of XI and Phi of XJ. So this corresponds to running a support vector machine with the features given by Phi of X rather than with your original one-dimensional input feature X.

#### Questions & Answers

are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!