# 1.6 Fractions  (Page 2/2)

 Page 2 / 2
 Odd number Even number Odd number Odd Even Even number Even Even

If we take three consecutive numbers and multiply them together, the resulting number is always divisible by three. This should be obvious since if we have any three consecutive numbers, one of them will be divisible by 3.

Now we are ready to demonstrate that ${n}^{2}+n$ is even for all $n\in {Z}$ . If we factorise this expression we get: $n\left(n+1\right)$ . If $n$ is even, than $n+1$ is odd. If $n$ is odd, than $n+1$ is even. Since we know that if we multiply an even number with an odd number or an odd number with an even number, we get an even number, we have demonstrated that ${n}^{2}+n$ is always even. Try this for a few values of $n$ and you should find that this is true.

To demonstrate that ${n}^{3}-n$ is divisible by 6 for all $n\in {Z}$ , we first note that the factors of 6 are 3 and 2. So if we show that ${n}^{3}-n$ is divisible by both 3 and 2, then we have shown that it is also divisible by 6! If we factorise this expression we get: $n\left(n+1\right)\left(n-1\right)$ . Now we note that we are multiplying three consecutive numbers together (we are taking $n$ and then adding 1 or subtracting 1. This gives us the two numbers on either side of $n$ .) For example, if $n=4$ , then $n+1=5$ and $n-1=3$ . But we know that when we multiply three consecutive numbers together, the resulting number is always divisible by 3. So we have demonstrated that ${n}^{3}-n$ is always divisible by 3. To demonstrate that it is also divisible by 2, we can also show that it is even. We have shown that ${n}^{2}+n$ is always even. So now we recall what we said about multiplying even and odd numbers. Since one number is always even and the other can be either even or odd, the result of multiplying these numbers together is always even. And so we have demonstrated that ${n}^{3}-n$ is divisible by 6 for all $n\in {Z}$ .

## Summary

• A binomial is a mathematical expression with two terms. The product of two identical binomials is known as the square of the binomial. The difference of two squares is when we multiply $\left(ax+b\right)\left(ax-b\right)$
• Factorising is the opposite of expanding the brackets. You can use common factors or the difference of two squares to help you factorise expressions.
• The distributive law ( $\left(A+B\right)\left(C+D+E\right)=A\left(C+D+E\right)+B\left(C+D+E\right)$ ) helps us to multiply a binomial and a trinomial.
• The sum of cubes is: $\left(x+y\right)\left({x}^{2}-xy+{y}^{2}\right)={x}^{3}+{y}^{3}$ and the difference of cubes is: ${x}^{3}-{y}^{3}=\left(x-y\right)\left({x}^{2}+xy+{y}^{2}\right)$
• To factorise a quadratic we find the two binomials that were multiplied together to give the quadratic.
• We can also factorise a quadratic by grouping. This is where we find a common factor in the quadratic and take it out and then see what is left over.
• We can simplify fractions by using the methods we have learnt to factorise expressions.
• Fractions can be added or subtracted. To do this the denominators of each fraction must be the same.

## End of chapter exercises

1. Factorise:
1. ${a}^{2}-9$
2. ${m}^{2}-36$
3. $9{b}^{2}-81$
4. $16{b}^{6}-25{a}^{2}$
5. ${m}^{2}-\left(1/9\right)$
6. $5-5{a}^{2}{b}^{6}$
7. $16b{a}^{4}-81b$
8. ${a}^{2}-10a+25$
9. $16{b}^{2}+56b+49$
10. $2{a}^{2}-12ab+18{b}^{2}$
11. $-4{b}^{2}-144{b}^{8}+48{b}^{5}$
2. Factorise completely:
1. $\left(16-{x}^{4}\right)$
2. ${7x}^{2}-14x+7xy-14y$
3. ${y}^{2}-7y-30$
4. $1-x-{x}^{2}+{x}^{3}$
5. $-3\left(1-{p}^{2}\right)+p+1$
3. Simplify the following:
1. ${\left(a-2\right)}^{2}-a\left(a+4\right)$
2. $\left(5a-4b\right)\left(25{a}^{2}+20\mathrm{ab}+16{b}^{2}\right)$
3. $\left(2m-3\right)\left(4{m}^{2}+9\right)\left(2m+3\right)$
4. $\left(a+2b-c\right)\left(a+2b+c\right)$
4. Simplify the following:
1. $\frac{{p}^{2}-{q}^{2}}{p}÷\frac{p+q}{{p}^{2}-\mathrm{pq}}$
2. $\frac{2}{x}+\frac{x}{2}-\frac{2x}{3}$
5. Show that ${\left(2x-1\right)}^{2}-{\left(x-3\right)}^{2}$ can be simplified to $\left(x+2\right)\left(3x-4\right)$

6. What must be added to ${x}^{2}-x+4$ to make it equal to ${\left(x+2\right)}^{2}$

#### Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Maths grade 10 rought draft. OpenStax CNX. Sep 29, 2011 Download for free at http://cnx.org/content/col11363/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Maths grade 10 rought draft' conversation and receive update notifications?  By By  By     By