# 1.4 Vectors  (Page 5/5)

 Page 5 / 5

## Why should we study vectors?

The basic concepts in physics – particularly the branch of mechanics - have a direct and inherently characterizing relationship with the concept of vector. The reason lies in the directional attribute of quantities, which is used to describe dynamical aspect of natural phenomena. Many of the physical terms and concepts are simply vectors like position vector, displacement vector etc. They are as a matter of fact defined directly in terms of vector like “it is a vector ……………”.

The basic concept of “cause and effect” in mechanics (comprising of kinematics and dynamics), is predominantly based on the interpretation of direction in addition to magnitude. Thus, there is no way that we could accurately express these quantities and their relationship without vectors. There is, however, a general tendency (particular in the treatment designed for junior classes) to try to evade vectors and look around ways to deal with these inherently vector based concepts without using vectors! As expected this approach is a poor reflection of the natural process, where basic concepts are simply ingrained with the requirement of handling direction along with magnitude.

It is, therefore, imperative that we switch over from work around approach to vector approach to study physics as quickly as possible. Many a times, this scalar “work around” inculcates incorrect perception and understanding that may persist for long, unless corrected with an appropriate vector description.

The best approach, therefore, is to study vector in the backdrop of physical phenomena and use it with clarity and advantage in studying nature. For this reasons, our treatment of “vector physics” – so to say - in this course will strive to correlate vectors with appropriate physical quantities and concepts.

The most fundamental reason to study nature in terms of vectors, wherever direction is involved, is that vector representation is concise, explicit and accurate.

To score this point, let us consider an example of the magnetic force experienced by a charge, q, moving with a velocity $\mathbf{v}$ in a magnetic field, “ $\mathbf{B}$ . The magnetic force, $\mathbf{F}$ , experienced by moving particle, is perpendicular to the plane, P, formed by the the velocity and the magnetic field vectors as shown in the figure .

The force is given in the vector form as :

$\begin{array}{l}\mathbf{F}=q\left(\mathbf{v}x\mathbf{B}\right)\end{array}$

This equation does not only define the magnetic force but also outlines the intricacies about the roles of the each of the constituent vectors. As per vector rule, we can infer from the vector equation that :

• The magnetic force ( F ) is perpendicular to the plane defined by vectors v and B .
• The direction of magnetic force i.e. which side of plane.
• The magnitude of magnetic force is "qvB sinθ", where θ is the smaller angle enclosed between the vectors v and B .

This example illustrates the compactness of vector form and completeness of the information it conveys. On the other hand, the equivalent scalar strategy to describe this phenomenon would involve establishing an empirical frame work like Fleming’s left hand rule to determine direction. It would be required to visualize vectors along three mutually perpendicular directions represented by three fingers in a particular order and then apply Fleming rule to find the direction of the force. The magnitude of the product, on the other hand, would be given by qvB sinθ as before.

The difference in two approaches is quite remarkable. The vector method provides a paragraph of information about the physical process, whereas a paragraph is to be followed to apply scalar method ! Further, the vector rules are uniform and consistent across vector operations, ensuring correctness of the description of physical process. On the other hand, there are different set of rules like Fleming left and Fleming right rules for two different physical processes.

The last word is that we must master the vectors rather than avoid them - particularly when the fundamentals of vectors to be studied are limited in extent.

#### Questions & Answers

List the application of projectile
Luther Reply
How can we take advantage of our knowledge about motion?
Kenneth Reply
pls explain what is dimension of 1in length and -1 in time ,what's is there difference between them
Mercy Reply
what are scalars
Abdhool Reply
show that 1w= 10^7ergs^-1
Lawrence Reply
what's lamin's theorems and it's mathematics representative
Yusuf Reply
if the wavelength is double,what is the frequency of the wave
Ekanem Reply
What are the system of units
Jonah Reply
A stone propelled from a catapult with a speed of 50ms-1 attains a height of 100m. Calculate the time of flight, calculate the angle of projection, calculate the range attained
Samson Reply
58asagravitasnal firce
Amar
water boil at 100 and why
isaac Reply
what is upper limit of speed
Riya Reply
what temperature is 0 k
Riya
0k is the lower limit of the themordynamic scale which is equalt to -273 In celcius scale
Mustapha
How MKS system is the subset of SI system?
Clash Reply
which colour has the shortest wavelength in the white light spectrum
Mustapha Reply
how do we add
Jennifer Reply
if x=a-b, a=5.8cm b=3.22 cm find percentage error in x
Abhyanshu Reply
x=5.8-3.22 x=2.58
sajjad

### Read also:

#### Get Jobilize Job Search Mobile App in your pocket Now!

Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications? By Sandhills MLT By Mary Matera By By John Gabrieli By Anh Dao By Robert Murphy By Richley Crapo By OpenStax By Sam Luong By OpenStax