<< Chapter < Page Chapter >> Page >

Receiver sensitivity

Noise is a phenomenon that degrades signal quality and impairs the receiver’s ability to make correct decisions about symbol detection. Thermal noise is a zero-mean Gaussian random process and processes the same power spectral density for all frequencies of interest. It is superimposed on a signal as it travels through the communication chain, and therefore has an additive effect. It is thus commonly referred to as additive white Gaussian noise (AWGN). The power spectral density of double-sided white noise is N0/2. At room temperature, single-sided noise power spectral density in the 1-Hz bandwidth is calculated with Equation 3:

The signal at the receiver is very small in magnitude and must be amplified before any meaningful information can be extracted from it. This is done using high gain amplifiers at the front end. The amplifiers also amplify noise and interference already present in the signal, and might even add their own noise to the processed signal. Such broadband noise is another reason why bandpass filters are used in the front end of a receiver. They attenuate out-of-band noise while keeping the signal of interest unchanged, thereby increasing the SNR.

Receiver sensitivity is the weakest RF signal that can be processed to develop a minimum SNR for achieving the required bit-error-rate (BER) performance. In AWGN, the sensitivity of a receiver can be derived from its noise figure. The noise factor of a receiver from the antenna port to the output of a detector is expressed in Equation 4 as the ratio of the SNR at the input to the SNR at the output.

Noise figure is a measure of how much a system adds noise to a signal as it passes through it. It is given by 10 * log(F)(dB). Assuming that minimum SNR is required for obtaining the defined error rate, the corresponding sensitivity level is calculated with Equation 5:

Where:

10 log(kTo) = -174 dBm/Hz is from (2.8)

Receiver noise bandwidth B is in Hz

NF = the overall noise figure of the receiver in dB

Data sheets specify this quantity for a specific bandwidth and BER performance. Therefore, it is often advantageous to use the smallest possible data rate in order to be able to use the smallest possible receiver bandwidth. Consider a Wi-Fi device with -83 dBm input sensitivity, a ZigBee at -97 dBm and a narrowband radio (CC1120) at -123 dBm.

From the Friss equation, you learned that for about every 6 dB in output power or input sensitivity, the range of the wireless system doubles. Therefore, a 40-dB improvement will equate to approximately 100 times the range.

Adjacent channel selectivity

Many different users must be able to broadcast at the same time. This necessitates separating the desired transmission from all the others at the receiver. One standard method is to allocate different frequency bands to various users; signals from different users can be separated using bandpass filters. Practical receive filters do not completely attenuate the frequency content of out-of-band signals, nor do they pass in-band signals completely distortion-free. Therefore, there is a requirement on the transmitters to spill the least amount of power in the adjacent bands.

This value is typically measured by applying a signal 3 dB above the sensitivity level of the system, adding a blocking signal in the adjacent channel, and increasing the power of the blocker until the receiver BER becomes the same as measured with 3 dB less signal and no blocker.

Maximum power is limited by nonlinearities

The building blocks of a receiver generate harmonics (tones at an integer multiple of the fundamental frequency) due to nonlinearities. This causes the translation of out-of-band frequencies onto in-band channels, thereby degrading SNR.

Harmonic distortion is the ratio of the amplitude of a particular tone to the fundamental. It is usually not a problem in a receiver and can be filtered out after the LNA. Cross-modulation occurs when a strong interferer and a weak desired signal present themselves at the front end. Amplitude modulation on the strong interferer is transferred to the desired signal through interaction with a receiver’s nonlinearity. A figure of merit of a receiver is the 1-dB compression point, P1dB, where the gain of the system is reduced by 1 dB as input power increases. Receiver sensitivity and the input 1-dB compression point set the dynamic range of a receiver.

Multitone distortions

Intermodulation distortions arise when more than one tone is present at the input. The third-order intercept point (IP3), which is measured by a two-tone test, shows to what extent the receiver can handle an environment with strong undesired signals. Second- and third-order intermodulation products are problematic in a receiver, as they fall very close to its operating frequency. The amplitude of the fundamental signal increases in proportion to the input signal, whereas the third-order intermodulation product increases as a cube of the fundmental. The IP3 is defined as the intersection of two lines in Figure 3 below.

Figure 3

Wireless systems operate in an environment where they encounter strong interfering signals from other transmitters. Since a large signal tends to reduce the average gain of the circuit, the weak signal may experience a diminishingly small gain. This is called desensitization, and for a large-enough interferer, the gain for the weak desired signal goes to zero and the signal is blocked.

An interferer that desensitizes a circuit even if the gain doesn’t go to zero is called a blocker. Receivers must be able to withstand a blocking signal 60 to 70 dB greater than the desired signal. This information is specified in data sheets as adjacent and alternate channel-rejection performance of radio-frequency integrated circuits.

Conclusion

TI’s wireless technology boasts a range of products, from low-power applications to cellular baseband processors. In low-power applications, TI has a broad range of devices that can suit any application, from consumer/personal networking to industrial monitoring and asset tracking. TI can provide complete solutions with reference designs, hardware development kits and software to jumpstart any wireless project, ranging from sub-1 GHz to ZigBee low-power networking and the Internet of things.

A few of TI's products for low-power wireless applications are listed in Table 1.

Table 1. TI Products for low power wireless applications.

Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Senior project guide to texas instruments components. OpenStax CNX. Feb 12, 2013 Download for free at http://cnx.org/content/col11449/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Senior project guide to texas instruments components' conversation and receive update notifications?

Ask