<< Chapter < Page Chapter >> Page >

Determine the combined intensity of two waves: perfect constructive interference

If two identical waves, each having an intensity of 1 . 00 W/m 2 size 12{1 "." "00"`"W/m" rSup { size 8{2} } } {} , interfere perfectly constructively, what is the intensity of the resulting wave?


We know from Superposition and Interference that when two identical waves, which have equal amplitudes X size 12{X} {} , interfere perfectly constructively, the resulting wave has an amplitude of 2 X size 12{2X} {} . Because a wave’s intensity is proportional to amplitude squared, the intensity of the resulting wave is four times as great as in the individual waves.


  1. Recall that intensity is proportional to amplitude squared.
  2. Calculate the new amplitude:
    I X 2 = 2 X 2 = 4 X 2 . size 12{I rSup { size 8{'} } prop left (X rSup { size 8{'} } right ) rSup { size 8{2} } = left (2X right ) rSup { size 8{2} } =4X rSup { size 8{2} } } {}
  3. Recall that the intensity of the old amplitude was:
    I X 2 . size 12{I rSup { size 8{'} } prop X rSup { size 8{2} } } {}
  4. Take the ratio of new intensity to the old intensity. This gives:
    I I = 4 . size 12{ { {I} over {I rSup { size 8{'} } } } =4} {}
  5. Calculate to find I size 12{I'} {} :
    I = 4 I = 4 . 00 W/m 2 . size 12{I'=4I=4 "." "00"`"W/m" rSup { size 8{2} } } {}


The intensity goes up by a factor of 4 when the amplitude doubles. This answer is a little disquieting. The two individual waves each have intensities of 1 . 00 W/m 2 size 12{1 "." "00"`"W/m" rSup { size 8{2} } } {} , yet their sum has an intensity of 4 . 00 W/m 2 size 12{4 "." "00"`"W/m" rSup { size 8{2} } } {} , which may appear to violate conservation of energy. This violation, of course, cannot happen. What does happen is intriguing. The area over which the intensity is 4 . 00 W/m 2 size 12{4 "." "00"`"W/m" rSup { size 8{2} } } {} is much less than the area covered by the two waves before they interfered. There are other areas where the intensity is zero. The addition of waves is not as simple as our first look in Superposition and Interference suggested. We actually get a pattern of both constructive interference and destructive interference whenever two waves are added. For example, if we have two stereo speakers putting out 1 . 00 W/m 2 size 12{1 "." "00"`"W/m" rSup { size 8{2} } } {} each, there will be places in the room where the intensity is 4 . 00 W/m 2 size 12{4 "." "00"`"W/m" rSup { size 8{2} } } {} , other places where the intensity is zero, and others in between. [link] shows what this interference might look like. We will pursue interference patterns elsewhere in this text.

Two speakers are shown at the top of the figure at left and right side. Rarefactions are shown as dotted curves and compression as dark curves. The interference of the sound waves from these two speakers is shown. There are some red spots, showing constructive interference, are shown on the interfering waves.
These stereo speakers produce both constructive interference and destructive interference in the room, a property common to the superposition of all types of waves. The shading is proportional to intensity.

Which measurement of a wave is most important when determining the wave's intensity?

Amplitude, because a wave’s energy is directly proportional to its amplitude squared.

Section summary

Intensity is defined to be the power per unit area:

I = P A size 12{I= { {P} over {A} } } {} and has units of W/m 2 size 12{"W/m" rSup { size 8{2} } } {} .

Conceptual questions

Two identical waves undergo pure constructive interference. Is the resultant intensity twice that of the individual waves? Explain your answer.

Circular water waves decrease in amplitude as they move away from where a rock is dropped. Explain why.


Medical Application

Ultrasound of intensity 1 . 50 × 10 2 W/m 2 size 12{1 "." "50" times "10" rSup { size 8{2} } `"W/m" rSup { size 8{2} } } {} is produced by the rectangular head of a medical imaging device measuring 3.00 by 5.00 cm. What is its power output?

0.225 W

The low-frequency speaker of a stereo set has a surface area of 0 . 05 m 2 size 12{0 "." "05"`m rSup { size 8{2} } } {} and produces 1W of acoustical power. What is the intensity at the speaker? If the speaker projects sound uniformly in all directions, at what distance from the speaker is the intensity 0 . 1 W/m 2 size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} ?

To increase intensity of a wave by a factor of 50, by what factor should the amplitude be increased?


Engineering Application

A device called an insolation meter is used to measure the intensity of sunlight has an area of 100 cm 2 and registers 6.50 W. What is the intensity in W/m 2 size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} ?

Astronomy Application

Energy from the Sun arrives at the top of the Earth’s atmosphere with an intensity of 1.30 kW/m 2 . size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} How long does it take for 1.8 × 10 9 J size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} to arrive on an area of 1 . 00 m 2 size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} ?

16.0 d

Suppose you have a device that extracts energy from ocean breakers in direct proportion to their intensity. If the device produces 10.0 kW of power on a day when the breakers are 1.20 m high, how much will it produce when they are 0.600 m high?

2.50 kW

Engineering Application

(a) A photovoltaic array of (solar cells) is 10.0% efficient in gathering solar energy and converting it to electricity. If the average intensity of sunlight on one day is 700 W/m 2 , size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} what area should your array have to gather energy at the rate of 100 W? (b) What is the maximum cost of the array if it must pay for itself in two years of operation averaging 10.0 hours per day? Assume that it earns money at the rate of 9.00 ¢ per kilowatt-hour.

A microphone receiving a pure sound tone feeds an oscilloscope, producing a wave on its screen. If the sound intensity is originally 2.00 × 10 –5 W/m 2 , size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} but is turned up until the amplitude increases by 30.0%, what is the new intensity?

3.38 × 10 –5 W/m 2

Medical Application

(a) What is the intensity in W/m 2 size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} of a laser beam used to burn away cancerous tissue that, when 90.0% absorbed, puts 500 J of energy into a circular spot 2.00 mm in diameter in 4.00 s? (b) Discuss how this intensity compares to the average intensity of sunlight (about 700 W/m 2 size 12{0 "." 1`"W/m" rSup { size 8{2} } } {} ) and the implications that would have if the laser beam entered your eye. Note how your answer depends on the time duration of the exposure.

Questions & Answers

How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
How can I make nanorobot?
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
how can I make nanorobot?
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, General physics ii phy2202ca. OpenStax CNX. Jul 05, 2013 Download for free at http://legacy.cnx.org/content/col11538/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'General physics ii phy2202ca' conversation and receive update notifications?