# 1.1 Simple and compound pendula

 Page 1 / 1

## The simple pendulum

Shown is a simple pendulum which has a mass $m$ that is displaced by an angle $\theta$ . There is tension( $\stackrel{⃗}{T}$ ) in the string which acts from the mass to the anchor point. The weight of themass is $m\stackrel{⃗}{g}$ and the tension in the string is $T=mg{\mathrm{cos}}\theta$ . There is a tangential restoring force $=-mg{\mathrm{sin}}\theta$ . If we approximate that $\theta$ is small (we have to make this approximation or else we can not solve the problem analytically) then ${\mathrm{sin}}\theta \approx \theta$ and $x=l\theta$ . (note that ${\mathrm{sin}}\theta$ is only approximately equal to $\frac{x}{l}$ because $x$ is the distance along the $x$ axis) so that we can write: $\begin{array}{c}F=ma=m\stackrel{¨}{x}\\ =-mg{\mathrm{sin}}\theta \\ \approx -mg\theta \\ \approx -mg\frac{x}{l}\end{array}$ or $\stackrel{¨}{x}+\frac{g}{l}x=0$ (Note that We should immediately recongnize that this is the equation for simpleharmonic motion (SHM) with $\omega =\sqrt{\frac{g}{l}}\text{.}$

We could take another approach and use angular momentum to solve the problem. Recall that: $L=I\omega =I\stackrel{˙}{\theta }$ $I=m{l}^{2}\text{.}$ Also recall that the torque is the time derivative of the angular momentum so that: $\begin{array}{c}\stackrel{⃗}{\tau }=\stackrel{⃗}{r}×\stackrel{⃗}{F}=\frac{d\stackrel{⃗}{L}}{dt}\\ -lmg\theta =I\stackrel{¨}{\theta }\end{array}$ $\stackrel{¨}{\theta }+\frac{g}{l}\theta =0$ Again we would recognize that this is simple harmonic motion with $\omega =\sqrt{\frac{g}{l}}\text{.}$

## The compound pendulum

The compound pendulum is another interesting example of a pendulum that undergoes simple harmonic motion. For an extended body then one uses thecenter of mass and the moment of inertia. Use the center of mass, the moment of inertia and the Torque (angular force) $\stackrel{⃗}{\tau }=\stackrel{⃗}{r}×\stackrel{⃗}{F}$ 

$\begin{array}{c}\tau =r×F\\ I\stackrel{¨}{\theta }=-lmg{\mathrm{sin}}\theta \approx -lmg\theta \\ \stackrel{¨}{\theta }+\frac{lmg}{I}\theta =0\end{array}$ So again we get SHM now with ${\omega }^{2}=\frac{lmg}{I}$ One sees that this formalism can be applied to the simple pendulum (ignore thestring and one can consider the ball a point mass). The moment of inertia is $m{l}^{2}$ . So we get ${\omega }^{2}=\frac{lmg}{m{l}^{2}}=\frac{g}{l}$ which is just what we got before for the simple pendulum. We could write theequation of motion for a simple pendulum as: $\theta =A{e}^{i\left(\omega t+{\phi }_{0}\right)}$

where ${\phi }_{0}$ is determined by initial conditions.

A discussion of the Pendulum and Simple Harmonic Oscillator can be found at

#### Questions & Answers

how can chip be made from sand
Eke Reply
is this allso about nanoscale material
Almas
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

### Read also:

#### Get Jobilize Job Search Mobile App in your pocket Now!

Source:  OpenStax, Waves and optics. OpenStax CNX. Nov 17, 2005 Download for free at http://cnx.org/content/col10279/1.33
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Waves and optics' conversation and receive update notifications? By JavaChamp Team By Maureen Miller By OpenStax By OpenStax By Wey Hey By Abby Sharp By Mahee Boo By Edgar Delgado By Tony Pizur By Briana Knowlton