# 1.1 Simple and compound pendula

 Page 1 / 1

## The simple pendulum

Shown is a simple pendulum which has a mass $m$ that is displaced by an angle $\theta$ . There is tension( $\stackrel{⃗}{T}$ ) in the string which acts from the mass to the anchor point. The weight of themass is $m\stackrel{⃗}{g}$ and the tension in the string is $T=mg{\mathrm{cos}}\theta$ . There is a tangential restoring force $=-mg{\mathrm{sin}}\theta$ . If we approximate that $\theta$ is small (we have to make this approximation or else we can not solve the problem analytically) then ${\mathrm{sin}}\theta \approx \theta$ and $x=l\theta$ . (note that ${\mathrm{sin}}\theta$ is only approximately equal to $\frac{x}{l}$ because $x$ is the distance along the $x$ axis) so that we can write: $\begin{array}{c}F=ma=m\stackrel{¨}{x}\\ =-mg{\mathrm{sin}}\theta \\ \approx -mg\theta \\ \approx -mg\frac{x}{l}\end{array}$ or $\stackrel{¨}{x}+\frac{g}{l}x=0$ (Note that We should immediately recongnize that this is the equation for simpleharmonic motion (SHM) with $\omega =\sqrt{\frac{g}{l}}\text{.}$

We could take another approach and use angular momentum to solve the problem. Recall that: $L=I\omega =I\stackrel{˙}{\theta }$ $I=m{l}^{2}\text{.}$ Also recall that the torque is the time derivative of the angular momentum so that: $\begin{array}{c}\stackrel{⃗}{\tau }=\stackrel{⃗}{r}×\stackrel{⃗}{F}=\frac{d\stackrel{⃗}{L}}{dt}\\ -lmg\theta =I\stackrel{¨}{\theta }\end{array}$ $\stackrel{¨}{\theta }+\frac{g}{l}\theta =0$ Again we would recognize that this is simple harmonic motion with $\omega =\sqrt{\frac{g}{l}}\text{.}$

## The compound pendulum

The compound pendulum is another interesting example of a pendulum that undergoes simple harmonic motion. For an extended body then one uses thecenter of mass and the moment of inertia. Use the center of mass, the moment of inertia and the Torque (angular force) $\stackrel{⃗}{\tau }=\stackrel{⃗}{r}×\stackrel{⃗}{F}$ 

$\begin{array}{c}\tau =r×F\\ I\stackrel{¨}{\theta }=-lmg{\mathrm{sin}}\theta \approx -lmg\theta \\ \stackrel{¨}{\theta }+\frac{lmg}{I}\theta =0\end{array}$ So again we get SHM now with ${\omega }^{2}=\frac{lmg}{I}$ One sees that this formalism can be applied to the simple pendulum (ignore thestring and one can consider the ball a point mass). The moment of inertia is $m{l}^{2}$ . So we get ${\omega }^{2}=\frac{lmg}{m{l}^{2}}=\frac{g}{l}$ which is just what we got before for the simple pendulum. We could write theequation of motion for a simple pendulum as: $\theta =A{e}^{i\left(\omega t+{\phi }_{0}\right)}$

where ${\phi }_{0}$ is determined by initial conditions.

A discussion of the Pendulum and Simple Harmonic Oscillator can be found at

what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Preparation and Applications of Nanomaterial for Drug Delivery
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers! By Richley Crapo By Jazzycazz Jackson By By Rylee Minllic By OpenStax By OpenStax By Jessica Collett By Ann Schlosser By Stephen Voron By OpenStax