<< Chapter < Page Chapter >> Page >

Eliminating the parameter

Eliminate the parameter for each of the plane curves described by the following parametric equations and describe the resulting graph.

  1. x ( t ) = 2 t + 4 , y ( t ) = 2 t + 1 , −2 t 6
  2. x ( t ) = 4 cos t , y ( t ) = 3 sin t , 0 t 2 π
  1. To eliminate the parameter, we can solve either of the equations for t. For example, solving the first equation for t gives
    x = 2 t + 4 x 2 = 2 t + 4 x 2 4 = 2 t t = x 2 4 2 .

    Note that when we square both sides it is important to observe that x 0 . Substituting t = x 2 4 2 this into y ( t ) yields
    y ( t ) = 2 t + 1 y = 2 ( x 2 4 2 ) + 1 y = x 2 4 + 1 y = x 2 3.

    This is the equation of a parabola opening upward. There is, however, a domain restriction because of the limits on the parameter t . When t = −2 , x = 2 ( −2 ) + 4 = 0 , and when t = 6 , x = 2 ( 6 ) + 4 = 4 . The graph of this plane curve follows.
    A curved line going from (−3, 0) through (2, 1) to (4, 13) with arrow going in that order. The point (−3, 0) is marked t = −2, the point (2, 1) is marked t = 0, the point (2 times the square root of 2, 5) is marked t = 2, the point (3 times the square root of 2, 9) is marked t = 4, and the point (4, 13) is marked t = 6. On the graph there are also written three equations: x(t) = square root of the quantity (2t + 4), y(t) = 2t + 1, and −2 ≤ t ≤ 6.
    Graph of the plane curve described by the parametric equations in part a.
  2. Sometimes it is necessary to be a bit creative in eliminating the parameter. The parametric equations for this example are
    x ( t ) = 4 cos t and y ( t ) = 3 sin t .

    Solving either equation for t directly is not advisable because sine and cosine are not one-to-one functions. However, dividing the first equation by 4 and the second equation by 3 (and suppressing the t ) gives us
    cos t = x 4 and sin t = y 3 .

    Now use the Pythagorean identity cos 2 t + sin 2 t = 1 and replace the expressions for sin t and cos t with the equivalent expressions in terms of x and y . This gives
    ( x 4 ) 2 + ( y 3 ) 2 = 1 x 2 16 + y 2 9 = 1.

    This is the equation of a horizontal ellipse centered at the origin, with semimajor axis 4 and semiminor axis 3 as shown in the following graph.
    An ellipse with major axis horizontal and of length 8 and with minor radius vertical and of length 6 that is centered at the origin with arrow going counterclockwise. The point (4, 0) is marked t = 0, the point (0, 3) is marked t = π/2, the point (−4, 0) is marked t = π, and the point (0, −3) is marked t = 3π/2. On the graph there are also written three equations: x(t) = 4 cos(t), y(t) = 3 sin(t), and 0 ≤ t ≤ 2π.
    Graph of the plane curve described by the parametric equations in part b.

    As t progresses from 0 to 2 π , a point on the curve traverses the ellipse once, in a counterclockwise direction. Recall from the section opener that the orbit of Earth around the Sun is also elliptical. This is a perfect example of using parameterized curves to model a real-world phenomenon.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Eliminate the parameter for the plane curve defined by the following parametric equations and describe the resulting graph.

x ( t ) = 2 + 3 t , y ( t ) = t 1 , 2 t 6

x = 2 + 3 y + 1 , or y = −1 + 3 x 2 . This equation describes a portion of a rectangular hyperbola centered at ( 2 , −1 ) .
A curved line going from (3.5, 1) to (2.5, 5) with arrow going in that order. The point (3.5, 1) is marked t = 2 and the point (2.5, 5) is marked t = 6. On the graph there are also written three equations: x(t) = 2 + 3/t, y(t) = t − 1, and 2 ≤ t ≤ 6.

Got questions? Get instant answers now!

So far we have seen the method of eliminating the parameter, assuming we know a set of parametric equations that describe a plane curve. What if we would like to start with the equation of a curve and determine a pair of parametric equations for that curve? This is certainly possible, and in fact it is possible to do so in many different ways for a given curve. The process is known as parameterization of a curve    .

Parameterizing a curve

Find two different pairs of parametric equations to represent the graph of y = 2 x 2 3 .

First, it is always possible to parameterize a curve by defining x ( t ) = t , then replacing x with t in the equation for y ( t ) . This gives the parameterization

x ( t ) = t , y ( t ) = 2 t 2 3 .

Since there is no restriction on the domain in the original graph, there is no restriction on the values of t.

We have complete freedom in the choice for the second parameterization. For example, we can choose x ( t ) = 3 t 2 . The only thing we need to check is that there are no restrictions imposed on x ; that is, the range of x ( t ) is all real numbers. This is the case for x ( t ) = 3 t 2 . Now since y = 2 x 2 3 , we can substitute x ( t ) = 3 t 2 for x. This gives

y ( t ) = 2 ( 3 t 2 ) 2 2 = 2 ( 9 t 2 12 t + 4 ) 2 = 18 t 2 24 t + 8 2 = 18 t 2 24 t + 6.

Therefore, a second parameterization of the curve can be written as

x ( t ) = 3 t 2 and y ( t ) = 18 t 2 24 t + 6 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?

Ask