<< Chapter < Page Chapter >> Page >
Three people cycling along a canal. The blurred buildings in the background convey a sense of motion of the cyclists.
These cyclists in Vietnam can be described by their position relative to buildings and a canal. Their motion can be described by their change in position, or displacement, in the frame of reference. (credit: Suzan Black, Fotopedia)

Learning objectives

By the end of this section, you will be able to:

  • Define position, displacement, distance, and distance traveled in a particular frame of reference.
  • Explain the relationship between position and displacement.
  • Distinguish between displacement and distance traveled.
  • Calculate displacement and distance given initial position, final position, and the path between the two.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 3.A.1.1 The student is able to express the motion of an object using narrative, mathematical, and graphical representations. (S.P. 1.5, 2.1, 2.2)
  • 3.A.1.3 The student is able to analyze experimental data describing the motion of an object and is able to express the results of the analysis using narrative, mathematical, and graphical representations. (S.P. 5.1)

Position

In order to describe the motion of an object, you must first be able to describe its position    —where it is at any particular time. More precisely, you need to specify its position relative to a convenient reference frame. Earth is often used as a reference frame, and we often describe the position of an object as it relates to stationary objects in that reference frame. For example, a rocket launch would be described in terms of the position of the rocket with respect to the Earth as a whole, while a professor's position could be described in terms of where she is in relation to the nearby white board. (See [link] .) In other cases, we use reference frames that are not stationary but are in motion relative to the Earth. To describe the position of a person in an airplane, for example, we use the airplane, not the Earth, as the reference frame. (See [link] .)

Displacement

If an object moves relative to a reference frame (for example, if a professor moves to the right relative to a white board or a passenger moves toward the rear of an airplane), then the object's position changes. This change in position is known as displacement    . The word “displacement” implies that an object has moved, or has been displaced.

Displacement

Displacement is the change in position of an object:

Δ x = x f x 0 , size 12{Δx=x rSub { size 8{f} } - x rSub { size 8{0} } } {}

where Δ x size 12{Δx} {} is displacement, x f size 12{x rSub { size 8{f} } } {} is the final position, and x 0 size 12{x rSub { size 8{0} } } {} is the initial position.

In this text the upper case Greek letter Δ size 12{Δ} {} (delta) always means “change in” whatever quantity follows it; thus, Δ x size 12{Δx} {} means change in position . Always solve for displacement by subtracting initial position x 0 size 12{x rSub { size 8{0} } } {} from final position x f size 12{x rSub { size 8{f} } } {} .

Note that the SI unit for displacement is the meter (m) (see Physical Quantities and Units ), but sometimes kilometers, miles, feet, and other units of length are used. Keep in mind that when units other than the meter are used in a problem, you may need to convert them into meters to complete the calculation.

The initial and final position of a professor as she moves to the right while writing on a whiteboard. Her initial position is 1 point 5 meters. Her final position is 3 point 5 meters. Her displacement is given by the equation delta x equals x sub f minus x sub 0 equals 2 point 0 meters.
A professor paces left and right while lecturing. Her position relative to the blackboard is given by x size 12{x} {} . The + 2 . 0 m size 12{+2 "." 0`m} {} displacement of the professor relative to the blackboard is represented by an arrow pointing to the right.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sample chapters: openstax college physics for ap® courses. OpenStax CNX. Oct 23, 2015 Download for free at http://legacy.cnx.org/content/col11896/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sample chapters: openstax college physics for ap® courses' conversation and receive update notifications?

Ask