<< Chapter < Page Chapter >> Page >

4/ Causal exponential

We have seen that

x [ n ] = α n u [ n ] Z X ˜ ( z ) = 1 1 αz 1 for z > α size 12{x \[ n \] =α rSup { size 8{n} } u \[ n \]{ size 24{ dlrarrow } } cSup { size 8{Z} } { tilde {X}} \( z \) = { {1} over {1 - αz rSup { size 8{ - 1} } } } " " ital "for"" " lline z rline>lline α rline } {}

Provided |α|<1, we can evaluate the DTFT as

X ˜ ( ϕ ) = 1 1 αe j2 πϕ size 12{ { tilde {X}} \( ϕ \) = { {1} over {1 - αe rSup { size 8{ - j2 ital "πϕ"} } } } } {}

We have already examined these functions in connection with DT filters discussed in previous section.

A pole at 0<α<1 yields a DTFT with large spectral components at low frequencies. As |α| decreases, the unit sample response approaches a unit sample, the DTFT magnitude approaches 1 (0 dB) and the angle approaches 0.

A pole at −1<α<0 yields a DTFT with large spectral components at high frequencies. As |α| decreases, the unit sample response approaches a unit sample, the DTFT magnitude approaches 1 (0 dB) and the angle approaches 0.

IV. MODEL OF C/D CONVERTER

We now return to the model of the C/D converter and relate the DTFT of a sequence to the CTFT of a sampled time function.

1/ Representation of FT of CT impulse train and DT sample train

x ˆ ( t ) = m x ( mT ) δ ( t mT ) CTFT X ˆ ( f ) = m x ( mT ) e j2ρ mfT size 12{ { hat {x}} \( t \) = Sum cSub { size 8{m} } {x \( ital "mT" \) δ \( t - ital "mT" \) } { dlrarrow } cSup { size 8{ ital "CTFT"} } { hat {X}} \( f \) = Sum cSub { size 8{m} } {x \( ital "mT" \) e rSup { size 8{ - j2ρ ital "mfT"} } } } {}

x [ n ] = m x ( mT ) δ [ n m ] DTFT X ˆ ( ϕ ) = m x ( mT ) e j2ρmϕ size 12{x \[ n \] = Sum cSub { size 8{m} } {x \( ital "mT" \) δ \[ n - m \]} { dlrarrow } cSup { size 8{ ital "DTFT"} } { hat {X}} \( ϕ \) = Sum cSub { size 8{m} } {x \( ital "mT" \) e rSup { size 8{ - j2ρmϕ} } } } {}

Note that X^(f) and X~(φ) are the same for

ϕ = fT = f 1 T = frequency sampling frquency size 12{ϕ= ital "fT"= { {f} over { { {1} over {T} } } } = { { ital "frequency"} over { ital "sampling"" " ital "frequency"} } } {}

2/ Completion of the model of a CD converter

3/ Model of C/D converter

4/ Model of D/C converter

Two-minute miniquiz problem

Problem 21-1 — DT filtering of a CT signal

The signal x(t) whose spectrum is band-limited to |f|<100 is sampled at the Nyquist rate and filtered by the DT filter shown. Find the spectrum of y(t), Y(f).

Solution

Sampling at the Nyquist rate implies that the sampling frequency is 2 × 100 = 200.

V. PERIODIC DISCRETE TIME SEQUENCES

For a periodic sequence of period N

x[n+N] = x[n]

This example shows a periodic sequence for which N = 4.

1/ Discrete time Fourier series (DTFS)

A periodic DT signal with period N can be expanded in a Fourier series of complex exponential sequences of the form

ψ m [ n ] = e j2π ( m N ) n size 12{ψ rSub { size 8{m} } \[ n \] =e rSup { size 8{j2π \( { {m} over {N} } \) n} } } {}

DT frequency

These exponentials have frequencies that are multiples of the fundamental frequency 1/N. Since

ψ m + N [ n ] = e j2π ( m + N N ) n = e j2π ( m N ) n = ψ m [ n ] size 12{ψ rSub { size 8{m} } +N rSup { size 8{ \[ n \] } } =e rSup { size 8{j2π \( { {m+N} over {N} } \) n} } =e rSup { size 8{j2π \( { {m} over {N} } \) n} } =ψ rSub { size 8{m} } \[ n \]} {}

there are only N distinct frequencies for a fundamental frequency of 1/N. As a consequence, only N frequencies are required to represent a periodic DT signal of period N.

The DT Fourier series can be expressed as

x [ n ] = m = 0 N 1 X ˜ [ m ] e j2π mn N size 12{x \[ n \] = Sum cSub { size 8{m=0} } cSup { size 8{N - 1} } { { tilde {X}} \[ m \]e rSup { size 8{j2π { { ital "mn"} over {N} } } } } } {}

X ˜ [ m ] = 1 N n = 0 N 1 x [ n ] e j2π mn N size 12{ { tilde {X}} \[ m \] = { {1} over {N} } Sum cSub { size 8{n=0} } cSup { size 8{N - 1} } {x \[ n \]e rSup { size 8{ - j2π { { ital "mn"} over {N} } } } } } {}

where

x[n] is periodic in n with period N,

and

X ˜ [ m ] size 12{ { tilde {X}} \[ m \] } {}

is periodic in m with period N.

2/ DTFS — periodic unit sample train

The Fourier series of the periodic unit sample train is

S ˜ [ m ] = 1 N n = 0 N 1 δ [ n ] e j2π mn N = 1 N size 12{ { tilde {S}} \[ m \] = { {1} over {N} } Sum cSub { size 8{n=0} } cSup { size 8{N - 1} } {δ \[ n \]e rSup { size 8{ - j2π { { ital "mn"} over {N} } } } } = { {1} over {N} } } {}

Therefore,

s [ n ] = m = δ [ n mN ] = 1 N m = 0 N 1 e j2π m N size 12{s \[ n \] = Sum cSub { size 8{m= - infinity } } cSup { size 8{ infinity } } {δ \[ n - ital "mN" \]} = { {1} over {N} } Sum cSub { size 8{m=0} } cSup { size 8{N - 1} } {e rSup { size 8{ - j2π { {m} over {N} } } } } } {}

3/ DTFT of a periodic unit sample train

We have two expressions for a periodic unit sample train,

s [ n ] = m = δ [ n mN ] = 1 N m = 0 N 1 e j2π m N size 12{s \[ n \] = Sum cSub { size 8{m= - infinity } } cSup { size 8{ infinity } } {δ \[ n - ital "mN" \]} = { {1} over {N} } Sum cSub { size 8{m=0} } cSup { size 8{N - 1} } {e rSup { size 8{ - j2π { {m} over {N} } } } } } {}

The DTFT of the first expression is

S ˜ [ ϕ ] = m = e j2 πϕ mN size 12{ { tilde {S}} \[ ϕ \] = Sum cSub { size 8{m= - infinity } } cSup { size 8{ infinity } } {e rSup { size 8{ - j2 ital "πϕ" ital "mN"} } } } {}

To obtain the DTFT of the second expression recall that

e j2π mn N F k = δ ( ϕ m N k ) size 12{e rSup { size 8{j2π { { ital "mn"} over {N} } } } { dlrarrow } cSup { size 8{F} } Sum cSub { size 8{k= - infinity } } cSup { size 8{ infinity } } {δ \( ϕ - { {m} over {N} } - k \) } } {}

so that

m = 0 N 1 e j2π mn N F m = 0 N 1 k = δ ( ϕ m N k ) = m = ( ϕ m N ) size 12{ Sum cSub { size 8{m=0} } cSup { size 8{N - 1} } {e rSup { size 8{j2π { { ital "mn"} over {N} } } } } { dlrarrow } cSup { size 8{F} } Sum cSub { size 8{m=0} } cSup { size 8{N - 1} } { Sum cSub { size 8{k= - infinity } } cSup { size 8{ infinity } } {δ \( ϕ - { {m} over {N} } - k \) } } = Sum cSub { size 8{m= - infinity } } cSup { size 8{ infinity } } { \( ϕ - { {m} over {N} } \) } } {}

The periodic unit sample train

s [ n ] = m = δ [ n mN ] = 1 N m = 0 N 1 e j2π mn N size 12{s \[ n \] = Sum cSub { size 8{m= - infinity } } cSup { size 8{ infinity } } {δ \[ n - ital "mN" \]} = { {1} over {N} } Sum cSub { size 8{m=0} } cSup { size 8{N - 1} } {e rSup { size 8{j2π { { ital "mn"} over {N} } } } } } {}

has the Fourier transform

S ˜ [ ϕ ] = m = e j2 πϕ mM = 1 N m = δ ( ϕ m N ) size 12{ { tilde {S}} \[ ϕ \] = Sum cSub { size 8{m= - infinity } } cSup { size 8{ infinity } } {e rSup { size 8{ - j2 ital "πϕ" ital "mM"} } } = { {1} over {N} } Sum cSub { size 8{m= - infinity } } cSup { size 8{ infinity } } {δ \( ϕ - { {m} over {N} } \) } } {}

Therefore, the DT Fourier transform of a periodic unit sample train in time is a periodic unit impulse train in frequency.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10803/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask