<< Chapter < Page Chapter >> Page >
u ( D F T ( N ) ) = 2 N - m 2 - m - 2

This result is not practically useful because the number of additions necessary to realize this minimum of multiplicationsbecomes very large for lengths greater than 16. Nevertheless, it proves the minimum number of multiplications required of an optimalalgorithm is a linear function of N rather than of N log N which is that required of practical algorithms. The best practical power-of-two algorithm seems to the Split-Radix [link] FFT discussed in The Cooley-Tukey Fast Fourier Transform Algorithm: The Split-Radix FFT Algorithm .

All of these theorems use ideas based on residue reduction, multiplication of the residues, and then combination by the CRT. Itis remarkable that this approach finds the minimum number of required multiplications by a constructive proof which generates analgorithm that achieves this minimum; and the structure of the optimal algorithm is, within certain variations, unique. For shorterlengths, the optimal algorithms give practical programs. For longer lengths the uncounted operations involved with the multiplication ofthe higher degree residue polynomials become very large and impractical. In those cases, efficient suboptimal algorithms can begenerated by using the same residue reduction as for the optimal case, but by using methods other than the Toom-Cook algorithm of Theorem 1 to multiply the residue polynomials.

Practical long DFT algorithms are produced by combining short prime length optimal DFT's with the Type 1 index map from Multidimensional Index Mapping to give the Prime Factor Algorithm (PFA) and the Winograd Fourier Transform Algorithm (WFTA) discussed in The Prime Factor and Winograd Fourier Transform Algorithms . It is interesting to note that the index mapping technique is useful inside the short DFT algorithms to replace the Toom-Cookalgorithm and outside to combine the short DFT's to calculate long DFT's.

The automatic generation of winograd's short dfts

by Ivan Selesnick, Polytechnic Institute of New York University

Introduction

Efficient prime length DFTs are important for two reasons. A particular application may require a prime length DFT and secondly, the maximum lengthand the variety of lengths of a PFA or WFTA algorithm depend upon the availability of prime length modules.

This [link] , [link] , [link] , [link] discusses automation of the process Winograd used for constructing prime length FFTs [link] , [link] for N < 7 and that Johnson and Burrus [link] extended to N < 19 . It also describes a program that will design any prime length FFT in principle,and will also automatically generate the algorithm as a C program and draw the corresponding flow graph.

Winograd's approach uses Rader's method to convert a prime length DFT into a P - 1 length cyclic convolution, polynomial residue reduction to decompose the problem into smaller convolutions [link] , [link] , and the Toom-Cook algorithm [link] , [link] . The Chinese Remainder Theorem (CRT) for polynomials is then used to recombine theshorter convolutions. Unfortunately, the design procedure derived directly from Winograd's theory becomes cumbersome for longer length DFTs, and this has oftenprevented the design of DFT programs for lengths greater than 19.

Questions & Answers

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
hi
Loga
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Fast fourier transforms. OpenStax CNX. Nov 18, 2012 Download for free at http://cnx.org/content/col10550/1.22
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fast fourier transforms' conversation and receive update notifications?

Ask