<< Chapter < Page Chapter >> Page >
v t = f - p ρ + ν 2 v , velocity perpendicular to velocity gradient v t = ν 2 v , if f and p vanish

Green's function, convolution, and superposition

A property of linear PDEs is that if two functions are each a solution to a PDE, then the sum of the two functions is also a solution of the PDE. This property of superposition can be used to derive solutions for general boundary, initial conditions, or distribution of sources by the process of convolution with a Green's function. The student is encouraged to read P. M. Morse and H. Feshbach, Methods of Theoretical Physics , 1953 for a discussion of Green's functions.

The Green's function is used to find the solution of an inhomogeneous differential equation and/or boundary conditions from the solution of the differential equation that is homogeneous everywhere except at one point in the space of the independent variables. (The initial condition is considered as a subset of boundary conditions here.) When the point is on the boundary, the Green's function may be used to satisfy inhomogeneous boundary conditions; when it is out in space, it may be used to satisfy the inhomogeneous PDE.

The concept of Green's solution is most easily illustrated for the solution to the Poisson equation for a distributed source ρ ( x , y , z ) throughout the volume. The Green's function is a solution to the homogeneous equation or the Laplace equation except at ( x o , y o , z o ) where it is equal to the Dirac delta function. The Dirac delta function is zero everywhere except in the neighborhood of zero. It has the following property.

- f ( ξ ) δ ( ξ - x ) d ξ = f ( x )

The Green's function for the Poisson equation in three dimensions is the solution of the following differential equation

2 G = - δ ( x - x o ) = - δ ( x - x o ) δ ( y - y o ) δ ( z - z o ) G ( x x o ) = 1 4 π x - x o

It is a solution of the Laplace equation except at x = x o where it has a singularity, i.e., it has a point source. The solution of the Poisson equation is determined by convolution.

u ( x ) = G ( x x o ) ρ ( x o ) d x o d y o d z o

Suppose now that one has an elliptic problem in only two dimensions. One can either solve for the Green's function in two dimensions or just recognize that the Dirac delta function in two dimensions is just the convolution of the three-dimensional Dirac delta function with unity.

δ ( x - x o ) δ ( y - y o ) = - δ ( x - x o ) δ ( y - y o ) δ ( z - z o ) d z o

Thus the two-dimensional Green's function can be found by convolution of the three dimensional Green's function with unity.

G ( x , y | x o , y o ) = G ( x | x o ) d z o = 1 4 π ln [ ( x x o ) 2 + ( y y o ) 2 ]

This is a solution of the Laplace equation everywhere except at ( x o , y o ) where there is a line source of unit strength. The solution of the Poisson equation in two dimensions can be determined by convolution.

u ( x , y ) = G ( x , y | x o , y o ) ρ ( x o , y o ) d x o d y o

Assignment 7.2 derivation of the green's function

Derive the Green's function for the Poisson equation in 1-D, 2-D, and 3-D by transforming the coordinate system to cylindrical polar or spherical polar coordinate system for the 2-D and 3-D cases, respectively. Compare the results derived by convolution.

Method of images

Green's functions can also be determined for inhomogeneous boundary conditions (the boundary element method) but will not be discussed here. The Green's functions discussed above have an infinite domain. Homogeneous boundary conditions of the Dirichlet type ( u = 0 ) or Neumann type ( u / n = 0 ) along a plane(s) can be determined by the method of images.

Questions & Answers

are nano particles real
Missy Reply
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
has a lot of application modern world
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Transport phenomena. OpenStax CNX. May 24, 2010 Download for free at http://cnx.org/content/col11205/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Transport phenomena' conversation and receive update notifications?