<< Chapter < Page Chapter >> Page >
Се воведува множеството од рационални броеви.

Множество рационални броеви

Операцијата делење со цел број различен од нула не секогаш може да се изврши во множеството цели броеви, односно количникот на два цели броја не мора да е цел број. Затоа се укажува потребата од проширување на множеството цели броеви во множество рационални броеви кое во себе го содржи множеството цели броеви како вистинско подмножество. Имено, секој цел број може да се запише како дропка со именител 1. На пр. 3 = 3 1 , 3 = 6 2 size 12{3= { {3} over {1} } ,``3= { {6} over {2} } } {} и т.н. Рационалните броеви може да се претстават како количник на два цели броја, при што бројот во именителот треба да се различен од нула.

М ножеството раци ­ о ­ нал ­ ни ­ броеви се запишува со

Q = p q p , q Z , q 0 . size 12{Q= left lbrace { {p} over {q} } \lline p,``q in Z,``q<>0 right rbrace "." } {}

Ова множество е секаде густо множество, бидејќи меѓу два произволни рационални броеви има бесконечно многу рационални броеви. За да го покажеме ова тврдење, ќе докажеме дека меѓу рационалните броеви a size 12{a} {} и b size 12{b} {} се наоѓа бројот a + b 2 . size 12{ { {a+b} over {2} } "." } {} Нека a < b size 12{a<b} {} и ако на двете страни од ова неравенство се додаде бројот a size 12{a} {} се добива

2a < a + b a < a + b 2 . alignl { stack { size 12{2a<a+b} {} # size 12{a<{ {a+b} over {2} } "." } {} } } {}

Аналогно, ако на двете страни од неравенставото a < b size 12{a<b} {} со додаде бројот b size 12{b} {} се добива

a + b < 2b a + b 2 < b . alignl { stack { size 12{a+b<2b} {} # size 12{ { {a+b} over {2} }<b "." } {} } } {}

Од овие две неравенства следува дека

a < a + b 2 < b size 12{a<{ {a+b} over {2} }<b} {}

што означува дека меѓу два рационални броеви a size 12{a} {} и b size 12{b} {} се наоѓа и рационалниот број a + b 2 . size 12{ { {a+b} over {2} } "." } {} Со истата постапка, ако на неравенството a < b size 12{a<b} {} се додава бројот 2a size 12{2a} {} и 2b size 12{2b} {} или na , ( n N ) size 12{ ital "na", \( n in N \) } {} и nb , ( n N ) size 12{ ital "nb", \( n in N \) } {} се добива низа броеви меѓу броевите меѓу a size 12{a} {} и b size 12{b} {} .

Множеството Q size 12{Q} {} исто како и множеството на природни броеви има моќ на преброиво мно­жес­тво бидејќи рационалните броеви може да се подредат во низа во која најпрво се запишуваат рационалните броеви чии што збир на цифри од именителот и броителот изнесува 1 size 12{1`} {} , потоа оние со збир 2 size 12{2`} {} , па 3 size 12{3} {} и т.н. при што се добива низата претставена со следнава шема:

0 1 size 12{ { {0} over {1} } } {} ,

0 2 , 1 1 size 12{ { {0} over {2} } ,` { {1} over {1} } } {} ,

0 3 , 1 2 , 2 1 size 12{ { {0} over {3} } ,` { {1} over {2} } ,` { {2} over {1} } } {} ,

0 4 , 1 3 , 2 2 , 3 1 size 12{ { {0} over {4} } ,` { {1} over {3} } ,` { {2} over {2} } ,` { {3} over {1} } } {} ,

0 5 , 1 4 , 2 3 , 3 2 , 4 1 size 12{ { {0} over {5} } ,` { {1} over {4} } ,` { {2} over {3} } ,` { {3} over {2} } , { {4} over {1} } } {} ,

size 12{ dotslow } {} .

Како што се гледа од горенаведената шема, во наведената низа се запишани само позитивните рационални броеви, што нималку не ја намалува општоста, бидејќи до секој позитивен рационален број може да се додаде и рационалиот број со негативен предзнак. Се забележува дека секој рационален број во оваа низа се повторува бесконечен број пати, но тоа не е битно, важно е дека рационалните броеви на овој начин се подредени во низа, а со тоа нивното множество има моќ на преброиво. За досега наведените множества од броеви важи

N Z Q size 12{N subset Z subset Q} {} ,

што јасно го покажува начинот на кој се врши проширувањето на множествата броеви.

Questions & Answers

what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
How can I make nanorobot?
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
how can I make nanorobot?
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Воведни поими од математичка анализа. OpenStax CNX. Nov 01, 2007 Download for free at http://legacy.cnx.org/content/col10475/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Воведни поими од математичка анализа' conversation and receive update notifications?