<< Chapter < Page Chapter >> Page >
This collection comprises Chapter 1 of the book A Wavelet Tour of Signal Processing, The Sparse Way(third edition, 2009) by Stéphane Mallat. The book's website at Academic Press ishttp://www.elsevier.com/wps/find/bookdescription.cws_home/714561/description#description The book's complementary materials are available athttp://wavelet-tour.com

Most digital measurement devices, such as cameras, microphones, or medical imaging systems, can be modeled as a linear transformation ofan incoming analog signal, plus noise due to intrinsic measurement fluctuations or to electronic noises. This linear transformationcan be decomposed into a stable analog-to-digital linear conversion followed by a discrete operator U that carries the specific transfer function of the measurement device. The resulting measured data can bewritten

Y [ q ] = U f [ q ] + W [ q ] ,

where f C N is the high-resolution signal we want to recover, and W [ q ] is the measurement noise. For a camera with an optic that is out of focus, the operator U is a low-pass convolution producing a blur. For a magnetic resonance imagingsystem, U is a Radon transform integrating the signal along rays and the number Q of measurements is smaller than N . In such problems, U is not invertible and recovering an estimate of f is an ill-posed inverse problem.

Inverse problems are among the most difficult signal-processing problems with considerable applications.When data acquisition is difficult, costly, or dangerous, or when the signal is degraded, super-resolution isimportant to recover the highest possible resolution information. This applies to satellite observations,seismic exploration, medical imaging, radar, camera phones, or degraded Internet videos displayed on high-resolution screens.Separating mixed information sources from fewer measurements is yet another super-resolution problem in telecommunication or audio recognition.

Incoherence, sparsity, and geometry play a crucial role in the solution of ill-defined inverse problems. With a sensing matrix U with random coefficients, Candès and Tao (candes-near-optimal)and Donoho (donoho-cs) proved that super-resolution becomes stable for signals having a sufficientlysparse representation in a dictionary. This remarkable result opens the door to new compression sensing devices and algorithmsthat recover high-resolution signals from a few randomized linear measurements.

Diagonal inverse estimation

In an ill-posed inverse problem,

Y = U f + W

the image space ImU = { U h : h C N } of U is of dimension Q smaller than the high-resolution space N where f belongs. Inverse problems include two difficulties. In the imagespace ImU , where U is invertible, its inverse may amplify the noise W , which then needs to be reduced by an efficient denoising procedure. In the null space NullU , all signals h are set to zero U h = 0 and thus disappear in the measured data Y . Recovering the projection of f in NullU requires using some strong prior information. A super-resolution estimator recovers an estimation of f in a dimension space larger than Q and hopefully equal to N , but this is not alwayspossible.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, A wavelet tour of signal processing, the sparse way. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col10711/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'A wavelet tour of signal processing, the sparse way' conversation and receive update notifications?

Ask