<< Chapter < Page Chapter >> Page >

We return to the topic of classification, and we assume an input (feature) space X and a binary output (label) space Y = { 0 , 1 } . Recall that the Bayes classifier (which minimizes the probability of misclassification) is defined by

f * ( x ) = 1 , P ( Y = 1 | X = x ) 1 / 2 0 , o t h e r w i s e .

Throughout this section, we will denote the conditional probability function by

η ( x ) P ( Y = 1 | X = x ) .

Plug-in classifiers

One way to construct a classifier using the training data { X i , Y i } i = 1 n is to estimate η ( x ) and then plug-it into the form of the Bayes classifier. That is obtain an estimate,

η ^ n ( x ) = η ( x ; { X i , Y i } i = 1 n )

and then form the “plug-in" classification rule

f ^ ( x ) = 1 , η ^ ( x ) 1 / 2 0 , o t h e r w i s e .
The function η ( x ) is generally more complicated than the ultimate classification rule (binary-valued), as we cansee
η : X [ 0 , 1 ] f : X { 0 , 1 } .

Therefore, in this sense plug-in methods are solving a more complicated problem than necessary. However, plug-in methods can perform well,as demonstrated by the next result.

Theorem

Plug-in classifier

Let η ˜ be an approximation to η , and consider the plug-in rule

f ( x ) = 1 , η ˜ ( x ) 1 / 2 0 , o t h e r w i s e .

Then,

R ( f ) - R * 2 E [ | η ( x ) - η ˜ ( x ) | ]

where

R ( f ) = P ( f ( X ) Y ) R * = R ( f * ) = inf f R ( f ) .

Consider any x R d . In proving the optimality of the Bayes classifier f * in Lecture 2 , we showed that

P f ( x ) Y | X = x - P f * ( x ) Y | X = x = 2 η ( x ) - 1 1 { f * ( x ) = 1 } - 1 { f ( x ) = 1 } ,

which is equivalent to

P f ( x ) Y | X = x - P f * ( x ) Y | X = x = 2 η ( x ) - 1 1 { f * ( x ) f ( x ) } ,

since f * ( x ) = 1 whenever 2 η ( x ) - 1 > 0 . Thus,

P ( f ( X ) Y ) - R * = R d 2 | η ( x ) - 1 / 2 | 1 { f * ( x ) f ( x ) } p X ( x ) d x where p X ( x ) is the marginal density of X R d 2 | η ( x ) - η ˜ ( x ) | 1 { f * ( x ) f ( x ) } p X ( x ) d x R d 2 | η ( x ) - η ˜ ( x ) | p X ( x ) d x = 2 E [ | η ( X ) - η ˜ ( X ) | ]

where the first inequality follows from the fact

f ( x ) f * ( x ) | η ( x ) - η ˜ ( x ) | | η ( x ) - 1 / 2 |

and the second inequality is simply a result of the fact that 1 { f * ( x ) f ( x ) } is either 0 or 1.

Pictorial illustration of | η ( x ) - η ˜ ( x ) | | η ( x ) - 1 / 2 | when f ( x ) f * ( x ) . Note that the inequality P ( f ( X ) Y ) - R * R d 2 | η ( x ) - η ˜ ( x ) | 1 { f * ( x ) f ( x ) } p X ( x ) d x shows that the excess risk is at most twice the integral over the setwhere f * ( x ) f ( x ) . The difference | η ( x ) - η ˜ ( x ) | may be arbitrarily large away from this set without effecting the error rate of the classifier. Thisillustrates the fact that estimating η well everywhere (i.e., regression) is unnecessary for the design of a good classifier (weonly need to determine where η crosses the 1 / 2 -level). In other words, “classification is easier than regression.”

The theorem shows us that a good estimate of η can produce a good plug-in classification rule. By “good" estimate, we mean an estimator η ˜ that is close to η in expected L 1 -norm .

The histogram classifier

Let's assume that the (input) features are randomly distributed over theunit hypercube X = [ 0 , 1 ] d (note that by scaling and shifting any set of bounded features we can satisfy this assumption),and assume that the (output) labels are binary, i.e., Y = { 0 , 1 } . A histogram classifier is based on a partition the hypercube [ 0 , 1 ] d into M smaller cubes of equal size.

Partition of hypercube in 2 dimensions

Consider the unit square [ 0 , 1 ] 2 and partition it into M subsquares of equal area (assuming M is a squared integer). Let the subsquares be denoted by { Q i } , i = 1 , ... , M .

Example of hypercube [ 0 , 1 ] 2 in M equally sized partition

Define the following piecewise-constant estimator of η ( x ) :

η ^ n ( x ) = j = 1 M P ^ j 1 { x Q j }

where

P ^ j = i = 1 n 1 { X i Q j , Y i = 1 } i = 1 n 1 { X i Q j } .

Like our previous denoising examples, we expect that the bias of η ^ n will decrease as M increases, but the variance will increase as M increases.

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Statistical learning theory. OpenStax CNX. Apr 10, 2009 Download for free at http://cnx.org/content/col10532/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Statistical learning theory' conversation and receive update notifications?

Ask