# 0.4 Time-frequency dictionaries  (Page 3/3)

 Page 3 / 3

Large-amplitude wavelet coefficients can detect and measure short high-frequency variations because they have a narrow timelocalization at high frequencies. At low frequencies their time resolution is lower, but they have a better frequency resolution.This modification of time and frequency resolution is adapted to represent sounds with sharp attacks, or radar signals having afrequency that may vary quickly at high frequencies.

## Multiscale zooming

A wavelet dictionary is also adapted to analyze the scaling evolution of transientswith zooming procedures across scales. Suppose now that ψ is real. Since it has a zero average, a wavelet coefficient $Wf\left(u,s\right)$ measures the variation of $\phantom{\rule{0.4pt}{0ex}}f$ in a neighborhood of u that has a size proportional to s . Sharp signal transitionscreate large-amplitude wavelet coefficients. Heisenberg time-frequency boxes of two wavelets, ψ u , s and ψ u 0 , s 0 . When thescale s decreases, the time support is reduced but the frequency spread increases and covers an intervalthat is shifted toward high frequencies.

Signal singularities have specific scaling invariance characterized by Lipschitz exponents. Chapter 6 relates the pointwiseregularity of $\phantom{\rule{0.166667em}{0ex}}f$ to the asymptotic decay of the wavelet transform amplitude $|Wf\left(u,s\right)|$ when s goes to zero. Singularities are detected by followingthe local maxima of the wavelet transform acrossscales.

In images, wavelet local maxima indicate the position of edges, which aresharp variations of image intensity. It defines scale–space approximation support of $\phantom{\rule{0.166667em}{0ex}}f$ from which precise image approximations are reconstructed.At different scales, the geometry of this local maxima support provides contoursof image structures of varying sizes. This multiscale edge detection is particularly effective forpattern recognition in computer vision (Canny:86).

The zooming capability of the wavelet transform not only locates isolated singular events, but canalso characterize more complex multifractal signalshaving nonisolated singularities. Mandelbrot (Mandelbrot:82) was the first to recognizethe existence of multifractals in most corners of nature. Scaling one part of a multifractalproduces a signal that is statistically similar to the whole. This self-similarityappears in the continuous wavelet transform, which modifies the analyzing scale.From global measurements of the wavelet transform decay, Chapter 6 measuresthe singularity distribution of multifractals. This is particularly important in analyzing theirproperties and testing multifractal models in physics or in financial time series.

## Time-frequency orthonormal bases

Orthonormal bases of time-frequency atoms remove all redundancy and define stablerepresentations. A wavelet orthonormal basis is an example of the time-frequency basis obtained by scaling a wavelet ψ with dyadic scales $s={2}^{\phantom{\rule{0.166667em}{0ex}}j}$ and translating it by ${2}^{\phantom{\rule{0.166667em}{0ex}}j}n$ , which is written ${\psi }_{j,n}$ . In the time-frequency plane, the Heisenberg resolution box of ${\psi }_{j,n}$ is a dilation by ${2}^{\phantom{\rule{0.166667em}{0ex}}j}$ and translation by ${2}^{\phantom{\rule{0.166667em}{0ex}}j}n$ of the Heisenberg box of ψ . A wavelet orthonormal is thus a subdictionary of thecontinuous wavelet transform dictionary, which yields a perfecttiling of the time-frequency plane illustrated in [link] . The time-frequency boxes of a wavelet basis define a tiling of the time-frequency plane.

One can construct many other orthonormal bases of time-frequency atoms, corresponding to different tilings of the time-frequency plane.Wavelet packet and local cosine bases are two important examples constructed in Chapter 8, withtime-frequency atoms that split the frequency and the time axis, respectively, in intervals of varying sizes.

## Wavelet packet bases

Wavelet bases divide the frequency axis into intervals of 1 octave bandwidth. Coifman, Meyer, and Wickerhauser (CoifmanMW:92) havegeneralized this construction with bases that split the frequency axis in intervals of bandwidth that may be adjusted.Each frequency interval is covered by the Heisenberg time-frequency boxesof wavelet packet functions translated in time, in order to cover the whole plane, as shown by [link] .

As for wavelets, wavelet-packet coefficients are obtained with a filter bank of conjugate mirror filters that split the frequency axisin several frequency intervals. Different frequency segmentations correspond to different waveletpacket bases. For images, a filter bank divides the image frequency support in squares of dyadic sizes thatcan be adjusted. A wavelet packet basis divides the frequency axis in separate intervals of varying sizes. A tiling is obtainedby translating in time the wavelet packets covering each frequency interval.

## Local cosine bases

Local cosine orthonormal bases are constructed by dividing the timeaxis instead of the frequency axis. The time axis is segmented in successive intervals $\left[{a}_{p},{a}_{p+1}\right]$ . The local cosine bases of Malvar (Malvar:88) are obtainedby designing smooth windows ${g}_{p}\left(t\right)$ that cover each interval $\left[{a}_{p},{a}_{p+1}\right]$ , and by multiplying them by cosine functions $cos\left(\xi t+\phi \right)$ of different frequencies. This is yet another idea that has beenindependently studied in physics, signal processing, and mathematics.Malvar's original construction was for discrete signals. At the same time, the physicist Wilson (Wilson:87)was designing a local cosine basis, with smooth windows of infinite support, to analyze theproperties of quantum coherent states. Malvar bases were also rediscovered and generalizedby the harmonic analysts Coifman and Meyer (CoifmanM:91). These different views of the same bases brought tolight mathematical and algorithmic properties that opened new applications.

A multiplication by $cos\left(\xi t+\phi \right)$ translates the Fourier transform ${\stackrel{^}{g}}_{p}\left(\omega \right)$ of ${g}_{p}\left(t\right)$ by $±\xi$ . Over positive frequencies,the time-frequency box of the modulated window ${g}_{p}\left(t\right)cos\left(\xi t+\phi \right)$ is therefore equal to the time-frequency box of g p translated by ξ along frequencies. [link] shows the time-frequency tiling corresponding to such alocal cosine basis. For images, a two-dimensional cosine basis is constructed by dividing theimage support in squares of varying sizes.

Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Got questions? Join the online conversation and get instant answers!          By