<< Chapter < Page Chapter >> Page >
effects of mixing, integration and differentiation of noise are studied and noise bandwidth is defined

Mixing of noise with a sinusoid

 If k th size 12{k rSup { size 8{ ital "th"} } } {} component of noise is mixed with a sinusoid

n k t cos 2πf o t = a k 2 cos kΔf + f o t + b k 2 sin kΔf + f o t + a k 2 cos kΔf f o t + b k 2 sin kΔf + f o t alignl { stack { size 12{n rSub { size 8{k} } left (t right )"cos"2πf rSub { size 8{o} } t= { {a rSub { size 8{k} } } over {2} } "cos"2πleft (kΔf+f rSub { size 8{o} } right )t+ { {b rSub { size 8{k} } } over {2} } "sin"2πleft (kΔf+f rSub { size 8{o} } right )t} {} # + { {a rSub { size 8{k} } } over {2} } "cos"2πleft (kΔf - f rSub { size 8{o} } right )t+ { {b rSub { size 8{k} } } over {2} } "sin"2πleft (kΔf+f rSub { size 8{o} } right )t {} } } {}

Sum and difference frequency noise spectral components with 1/2 amplitude are generated and

G n f + f o = G n f f o = G n f 4 size 12{G rSub { size 8{n} } left (f+f rSub { size 8{o} } right )=G rSub { size 8{n} } left (f - f rSub { size 8{o} } right )= { {G rSub { size 8{n} } left (f right )} over {4} } } {}

Considering power spectral components at kΔf size 12{kΔf} {} and lΔf size 12{lΔf} {} , let the mixing frequency be f 0 = k + l Δf size 12{f rSub { size 8{0} } = { size 8{1} } wideslash { size 8{2} } left (k+l right )Δf} {} . This will generate 2 difference frequency components at the same frequency pΔf = f 0 kΔf = lΔf f 0 size 12{pΔf=f rSub { size 8{0} } - kΔf=lΔf - f rSub { size 8{0} } } {}

 Then difference frequency components are

n p1 t = a k 2 cos 2πpΔ ft b k 2 sin 2πpΔ ft size 12{n rSub { size 8{p1} } left (t right )= { {a rSub { size 8{k} } } over {2} } "cos"2πpΔital "ft" - { {b rSub { size 8{k} } } over {2} } "sin"2πpΔital "ft"} {}
n p2 t = a l 2 cos 2πpΔ ft + b l 2 sin 2πpΔ ft size 12{n rSub { size 8{p2} } left (t right )= { {a rSub { size 8{l} } } over {2} } "cos"2πpΔital "ft"+ { {b rSub { size 8{l} } } over {2} } "sin"2πpΔital "ft"} {}

But as a k a l ¯ = a k b l ¯ = b k a l ¯ = b k b l ¯ = 0 size 12{ {overline {a rSub { size 8{k} } a rSub { size 8{l} } }} = {overline {a rSub { size 8{k} } b rSub { size 8{l} } }} = {overline {b rSub { size 8{k} } a rSub { size 8{l} } }} = {overline {b rSub { size 8{k} } b rSub { size 8{l} } }} =0} {}

We find

E n p1 t n p2 t = 0 size 12{E left [n rSub { size 8{p1} } left (t right )n rSub { size 8{p2} } left (t right ) right ]=0} {}

And

E n p1 t + n p2 t 2 = E n p1 t 2 + E n p2 t 2 size 12{E left lbrace left [n rSub { size 8{p1} } left (t right )+n rSub { size 8{p2} } left (t right ) right ] rSup { size 8{2} } right rbrace =E left lbrace left [n rSub { size 8{p1} } left (t right ) right ]rSup { size 8{2} } right rbrace +E left lbrace left [n rSub { size 8{p2} } left (t right ) right ] rSup { size 8{2} } right rbrace } {}

Thus superposition of power applies even after shifting due to mixing. 

Minimizing noise in systems by filtering:

Assume white noise with G n f = η 2 size 12{G rSub { size 8{n} } left (f right )= { {η} over {2} } } {}

To minimize noise entering the demodulator, a filter of bandwidth B can be placed, with B just wide enough to pass signal of interest. Output noise depends on the filter used.

Ideal LPF with white noise has N o = ηB size 12{N rSub { size 8{o} } =ηB} {}

rectangular BPF with white noise has N o = 2 η 2 f 2 f 1 = η f 2 f 1 size 12{N rSub { size 8{o} } =2 { {η} over {2} } left (f rSub { size 8{2} } - f rSub { size 8{1} } right )=ηleft (f rSub { size 8{2} } - f rSub { size 8{1} } right )} {}

Rc low pass filter:

The filter transfer function is

H f = 1 1 + j f f c size 12{H left (f right )= { {1} over {1+j { {f} over {f rSub { size 8{c} } } } } } } {}

Using G no f = H f 2 G ni f size 12{G rSub { size 8{ ital "no"} } left (f right )= lline H left (f right ) rline rSup { size 8{2} } G rSub { size 8{ ital "ni"} } left (f right )} {}

we have

G no f = η 2 1 1 + f f c 2 size 12{G rSub { size 8{ ital "no"} } left (f right )= { {η} over {2} } { {1} over {1+ left ( { {f} over {f rSub { size 8{c} } } } right ) rSup { size 8{2} } } } } {}

and noise power at filter o/p is

N o = G n f df = η 2 df 1 + f f c 2 size 12{N rSub { size 8{o} } = Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {G rSub { size 8{n} } left (f right ) ital "df"= { {η} over {2} } Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { { { ital "df"} over {1+ left ( { {f} over {f rSub { size 8{c} } } } right ) rSup { size 8{2} } } } } } } {}

using x = f f c size 12{x= { {f} over {f rSub { size 8{c} } } } } {} and noting that dx 1 + x 2 = π size 12{ Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { { { ital "dx"} over {1+x rSup { size 8{2} } } } } =π} {} , we have

N o = π 2 ηf c size 12{N rSub { size 8{o} } = { {π} over {2} }ηf rSub { size 8{c} } } {}

Differentiating filter:

 The transfer function is

H f = j2 πτ f size 12{H left (f right )=j2 ital "πτ"f} {}

white noise creates output psd

G no f = 2 τ 2 f 2 η 2 size 12{G rSub { size 8{ ital "no"} } left (f right )=4πrSup { size 8{2} }τrSup { size 8{2} } f rSup { size 8{2} } { {η} over {2} } } {}

and following this by a rectangular lpf of bandwidth B, noise at o/p is

N o = B B G no f df = 2 3 ητ 2 B 3 size 12{N rSub { size 8{o} } = Int cSub { size 8{ - B} } cSup { size 8{B} } {G rSub { size 8{ ital "no"} } left (f right ) ital "df"= { {4πrSup { size 8{2} } } over {3} } ital "ητ" rSup { size 8{2} } B rSup { size 8{3} } } } {}  

Integrating filter:

 An integrator integrating over an interval T has transfer function

H f = 1 j ωτ e jωT j ωτ size 12{H left (f right )= { {1} over {j ital "ωτ"} } - { {e rSup { size 8{ - jωT} } } over {j ital "ωτ"} } } {}

and thus

H f 2 = T τ 2 sin π Tf π Tf 2 size 12{ lline H left (f right ) rline rSup { size 8{2} } = left ( { {T} over {τ} } right ) rSup { size 8{2} } left ( { {"sin"πital "Tf"} over {πital "Tf"} } right ) rSup { size 8{2} } } {}

The noise power o/p with white noise input

N o = η 2 T τ 2 sin π Tf π Tf 2 df = ηT 2 size 12{N rSub { size 8{o} } = { {η} over {2} } left ( { {T} over {τ} } right ) rSup { size 8{2} } Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } { left ( { {"sin"πital "Tf"} over {πital "Tf"} } right ) rSup { size 8{2} } ital "df"= { {ηT} over {2τrSup { size 8{2} } } } } } {}

(The integral has a value =π)

Noise bandwidth:

If a real filter with transfer fn H f size 12{H left (f right )} {} centered at f o size 12{f rSub { size 8{o} } } {} is used, we can consider an equivalent rectangular filter centered at f o size 12{f rSub { size 8{o} } } {} with a bandwidth B N size 12{B rSub { size 8{N} } } {} passing the same noise power.

  • B N size 12{B rSub { size 8{N} } } {} is called the noise bandwidth of the real filter

 

  • For the RC Filtered curves, the area can be shown to be
N o RC = π 2 ηf c size 12{N rSub { size 8{o} } left ( ital "RC" right )= { {π} over {2} }ηf rSub { size 8{c} } } {}
  • For a rectangular filter we have
N o rect = η 2 2B N = ηB N size 12{N rSub { size 8{o} } left ( ital "rect" right )= { {η} over {2} } 2B rSub { size 8{N} } =ηB rSub { size 8{N} } } {}
  • Setting N 0 ( RC ) = N 0 ( rect ) size 12{N rSub { size 8{0} } \( ital "RC" \) =N rSub { size 8{0} } \( ital "rect" \) } {} , B N = π 2 f c size 12{B rSub { size 8{N} } = { {π} over {2} } f rSub { size 8{c} } } {}

Hence noise BW of RC filter is 1.57 times its 3 dB BW.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Noise in communications. OpenStax CNX. Jul 07, 2008 Download for free at http://cnx.org/content/col10549/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Noise in communications' conversation and receive update notifications?

Ask