<< Chapter < Page Chapter >> Page >
Се дефинира скаларан производ на два вектора и неговите својства. Definition of a scalar product and properties

Скаларен производ на два вектора

Најпрво ќе се дефинира поимот за агол меѓу два вектора:

Дефиниција. Под агол φ = ( a , b ) size 12{∠ \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } \) } {} меѓу ненултите вектори a size 12{ {a} cSup { size 8{ rightarrow } } } {} и b size 12{ {b} cSup { size 8{ rightarrow } } } {} се подразбира аголот 0 ϕ π size 12{0<= ϕ<= π} {} кој меѓусебно го зафаќаат векторите доведени до заеднички почеток.

Сега следи дефиниција за скаларен производ:

Дефиниција. Скаларен производ на два вектора a 0 size 12{ {a} cSup { size 8{ rightarrow } }<>{0} cSup { size 8{ rightarrow } } } {} и b 0 size 12{ {b} cSup { size 8{ rightarrow } }<>{0} cSup { size 8{ rightarrow } } } {} е скаларната величина дефинирана со

a b size 12{ {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } } {} = a b cos ( a , b ) size 12{ \lline {a} cSup { size 8{ rightarrow } } \lline cdot \lline {b} cSup { size 8{ rightarrow } } \lline "cos"∠ \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } \) } {} .

Очигледно е дека ако еден од множителите во скаларниот производ е нула вектор, тогаш и скаларниот производ е 0.

Својства на скаларниот производ

Од самата дефиниција за скаларен производ следуваат следните негови својства:

1. a b = b a size 12{ {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } = {b} cSup { size 8{ rightarrow } } cdot {a} cSup { size 8{ rightarrow } } } {} (комутативен закон);

2. a ( b + c ) = a b + a c size 12{ {a} cSup { size 8{ rightarrow } } cdot \( {b} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } \) = {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } + {a} cSup { size 8{ rightarrow } } cdot {c} cSup { size 8{ rightarrow } } } {} (дистрибутивен закон);

3. λ ( a b ) = ( λ a ) b = a ( λ b ) size 12{λ \( {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } \) = \( λ {a} cSup { size 8{ rightarrow } } \) cdot {b} cSup { size 8{ rightarrow } } = {a} cSup { size 8{ rightarrow } } cdot \( λ {b} cSup { size 8{ rightarrow } } \) } {} (множење со скалар λ);

4. Ако векторите a size 12{ {a} cSup { size 8{ rightarrow } } } {} и b size 12{ {b} cSup { size 8{ rightarrow } } } {} се паралелни, тогаш

a b size 12{ {a} cSup { size 8{ rightarrow } } \lline \lline {b} cSup { size 8{ rightarrow } } dlrarrow } {} a b size 12{ {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } } {} = ± a b size 12{ +- \lline {a} cSup { size 8{ rightarrow } } \lline cdot \lline {b} cSup { size 8{ rightarrow } } \lline } {} ;

5. a a = ( a ) 2 = a 2 size 12{ {a} cSup { size 8{ rightarrow } } cdot {a} cSup { size 8{ rightarrow } } = \( {a} cSup { size 8{ rightarrow } } \) rSup { size 8{2} } = \lline {a} cSup { size 8{ rightarrow } } \lline rSup { size 8{2} } } {} , односно a = a a size 12{ \lline {a} cSup { size 8{ rightarrow } } \lline = sqrt { {a} cSup { size 8{ rightarrow } } cdot {a} cSup { size 8{ rightarrow } } } } {} ;

6. Ако двата ненулти вектори во скаларниот производ се взаемно нормални, тогаш

a b a b = 0 size 12{ {a} cSup { size 8{ rightarrow } } ortho {b} cSup { size 8{ rightarrow } } dlrarrow {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } =0} {} ;

7. Скаларниот производ меѓу единичните вектори е:

i j size 12{ {i} cSup { size 8{ rightarrow } } cdot {j} cSup { size 8{ rightarrow } } } {} = 0, i k size 12{ {i} cSup { size 8{ rightarrow } } cdot {k} cSup { size 8{ rightarrow } } } {} = 0, j k size 12{ {j} cSup { size 8{ rightarrow } } cdot {k} cSup { size 8{ rightarrow } } } {} = 0,

i i size 12{ {i} cSup { size 8{ rightarrow } } cdot {i} cSup { size 8{ rightarrow } } } {} = 1, j j size 12{ {j} cSup { size 8{ rightarrow } } cdot {j} cSup { size 8{ rightarrow } } } {} = 1, k k size 12{ {k} cSup { size 8{ rightarrow } } cdot {k} cSup { size 8{ rightarrow } } } {} = 1.

Aко векторите a size 12{ {a} cSup { size 8{ rightarrow } } } {} и b size 12{ {b} cSup { size 8{ rightarrow } } } {} се зададени со своите координати

a size 12{ {a} cSup { size 8{ rightarrow } } } {} = { x 1 , y 1 , z 1 } и b size 12{ {b} cSup { size 8{ rightarrow } } } {} = { x 2 , y 2 , z 2 },

нивниот скаларен производ изразен преку координатите на векторите е:

a b = ( x 1 i + y 1 j + z 1 k ) ( x 2 i + y 2 j + z 2 k ) = size 12{ {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } = \( x rSub { size 8{1} } {i} cSup { size 8{ rightarrow } } +y rSub { size 8{1} } {j} cSup { size 8{ rightarrow } } +z rSub { size 8{1} } {k} cSup { size 8{ rightarrow } } \) cdot \( x rSub { size 8{2} } {i} cSup { size 8{ rightarrow } } +y rSub { size 8{2} } {j} cSup { size 8{ rightarrow } } +z rSub { size 8{2} } {k} cSup { size 8{ rightarrow } } \) ={}} {}

= x 1 x 2 ( i i ) + x 1 y 2 ( i j ) + x 1 z 2 ( i k ) + + y 1 x 2 ( j i ) + y 1 y 2 ( j j ) + y 1 z 2 ( j k ) + + z 1 x 2 ( k i ) + z 1 y 2 ( k j ) + z 1 z 2 ( k k ) = x 1 x 2 + y 1 y 2 + z 1 z 2 , alignl { stack { size 12{ {}=x rSub { size 8{1} } x rSub { size 8{2} } \( {i} cSup { size 8{ rightarrow } } cdot {i} cSup { size 8{ rightarrow } } \) +x rSub { size 8{1} } y rSub { size 8{2} } \( {i} cSup { size 8{ rightarrow } } cdot {j} cSup { size 8{ rightarrow } } \) +x rSub { size 8{1} } z rSub { size 8{2} } \( {i} cSup { size 8{ rightarrow } } cdot k \) +{}} {} #+y rSub { size 8{1} } x rSub { size 8{2} } \( {j} cSup { size 8{ rightarrow } } cdot {i} cSup { size 8{ rightarrow } } \) +y rSub { size 8{1} } y rSub { size 8{2} } \( {j} cSup { size 8{ rightarrow } } cdot {j} cSup { size 8{ rightarrow } } \) +y rSub { size 8{1} } z rSub { size 8{2} } \( {j} cSup { size 8{ rightarrow } } cdot k \) +{} {} # +z rSub { size 8{1} } x rSub { size 8{2} } \( {k} cSup { size 8{ rightarrow } } cdot {i} cSup { size 8{ rightarrow } } \) +z rSub { size 8{1} } y rSub { size 8{2} } \( {k} cSup { size 8{ rightarrow } } cdot {j} cSup { size 8{ rightarrow } } \) +z rSub { size 8{1} } z rSub { size 8{2} } \( {k} cSup { size 8{ rightarrow } } cdot {k} cSup { size 8{ rightarrow } } \) ={} {} #=x rSub { size 8{1} } x rSub { size 8{2} } +y rSub { size 8{1} } y rSub { size 8{2} } +z rSub { size 8{1} } z rSub { size 8{2} } , {} } } {}

односно a b = x 1 x 2 + y 1 y 2 + z 1 z 2 . size 12{ {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } =x rSub { size 8{1} } x rSub { size 8{2} } +y rSub { size 8{1} } y rSub { size 8{2} } +z rSub { size 8{1} } z rSub { size 8{2} } "." } {}

8. Аголот меѓу векторите a size 12{ {a} cSup { size 8{ rightarrow } } } {} и b size 12{ {b} cSup { size 8{ rightarrow } } } {} е

cos size 12{"cos"∠} {} ( a size 12{ {a} cSup { size 8{ rightarrow } } } {} , b size 12{ {b} cSup { size 8{ rightarrow } } } {} ) = a b a b size 12{ { { {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } } over { \lline {a} cSup { size 8{ rightarrow } } \lline \lline {b} cSup { size 8{ rightarrow } } \lline } } } {} ,

или изразен преку координатите на векторите

cos size 12{"cos"∠} {} ( a size 12{ {a} cSup { size 8{ rightarrow } } } {} , b size 12{ {b} cSup { size 8{ rightarrow } } } {} ) = x 1 x 2 + y 1 y 2 + z 1 z 2 x 1 2 + y 1 2 + z 1 2 x 2 2 + y 2 2 + z 2 2 size 12{ { {x rSub { size 8{1} } x rSub { size 8{2} } +y rSub { size 8{1} } y rSub { size 8{2} } +z rSub { size 8{1} } z rSub { size 8{2} } } over { sqrt {x rSub { size 8{1} } rSup { size 8{2} } +y rSub { size 8{1} } rSup { size 8{2} } +z rSub { size 8{1} } rSup { size 8{2} } } sqrt {x rSub { size 8{2} } rSup { size 8{2} } +y rSub { size 8{2} } rSup { size 8{2} } +z rSub { size 8{2} } rSup { size 8{2} } } } } } {} .

Од дефиницијата за скаларен производ на два вектора следува дека знакот на скаларниот производ е определен од аголот што го зафакаат двата вектора и тоа:

size 12{∠} {} ( a size 12{ {a} cSup { size 8{ rightarrow } } } {} , b size 12{ {b} cSup { size 8{ rightarrow } } } {} ) е остар агол ⇔ a b size 12{ {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } } {} >0;

size 12{∠} {} ( a size 12{ {a} cSup { size 8{ rightarrow } } } {} , b size 12{ {b} cSup { size 8{ rightarrow } } } {} ) е тап агол ⇔ a b size 12{ {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } } {} <0;

size 12{∠} {} ( a size 12{ {a} cSup { size 8{ rightarrow } } } {} , b size 12{ {b} cSup { size 8{ rightarrow } } } {} ) = π / 2 size 12{π/2} {} a b size 12{ {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } } {} = 0.

9. ( Ортогонална проекција на вектор ) Ако векторите a size 12{ {a} cSup { size 8{ rightarrow } } } {} и b size 12{ {b} cSup { size 8{ rightarrow } } } {} се доведат до заеднички почеток, секој од нив може ортогонално (нормално) да се проектира на другиот вектор со спуштање на нормала од крајот на едниот вектор кон правецот да другиот. Ортогоналната проекција на векторот a size 12{ {a} cSup { size 8{ rightarrow } } } {} врз векторот b size 12{ {b} cSup { size 8{ rightarrow } } } {} е вектор кој е во правец на векторот b size 12{ {b} cSup { size 8{ rightarrow } } } {} и се означува со pr b a size 12{"pr" rSub { size 8{ {b} cSup { size 6{ rightarrow } } } } {a} cSup { rightarrow } } {} . Преку тригонометриски релации (Сл. 1.7.) од скаларните вредности се добива

pr b a a = cos ( a , b ) size 12{ { { lline "pr" rSub { size 8{ {b} cSup { size 6{ rightarrow } } } } {a} cSup { rightarrow } rline } over { size 12{ \lline {a} cSup { rightarrow } size 12{ \lline }} } } size 12{ {}="cos"∠ \( {a} cSup { rightarrow } } size 12{, {b} cSup { rightarrow } } size 12{ \) }} {} ,

од каде

pr b a = a cos ( a , b ) . size 12{ \lline "pr" rSub { size 8{ {b} cSup { size 6{ rightarrow } } } } {a} cSup { rightarrow } size 12{ \lline = \lline {a} cSup { rightarrow } } size 12{ \lline "cos"∠ \( {a} cSup { rightarrow } } size 12{, {b} cSup { rightarrow } } size 12{ \) "." }} {}

Слика 1.7. Ортогонална проекција на вектор

Бидејќи a b size 12{ {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } } {} = | a size 12{ {a} cSup { size 8{ rightarrow } } } {} || b size 12{ {b} cSup { size 8{ rightarrow } } } {} | cos size 12{∠} {} ( a size 12{ {a} cSup { size 8{ rightarrow } } } {} , b size 12{ {b} cSup { size 8{ rightarrow } } } {} ) = | b size 12{ {b} cSup { size 8{ rightarrow } } } {} | | pr b a size 12{"pr" rSub { size 8{ {b} cSup { size 6{ rightarrow } } } } {a} cSup { rightarrow } } {} |,

проекцијата на векторот a size 12{ {a} cSup { size 8{ rightarrow } } } {} врз векторот b size 12{ {b} cSup { size 8{ rightarrow } } } {} е вектор во правец на b size 12{ {b} cSup { size 8{ rightarrow } } } {} и изразен како вектор е

{} pr b a size 12{"pr" rSub { size 8{ {b} cSup { size 6{ rightarrow } } } } {a} cSup { rightarrow } } {} = a b b b 0 size 12{ { { {a} cSup { rightarrow } cdot {b} cSup { rightarrow } } over {` \lline {b} cSup { rightarrow } \lline } } {b rSub { size 9{0}} } cSup { rightarrow } } {} ,

кеде b 0 size 12{ {b rSub { size 8{0} } } cSup { size 8{ rightarrow } } } {} е единечниот вектор на b size 12{ {b} cSup { size 8{ rightarrow } } } {} , или од b 0 = b b size 12{ {b rSub { size 8{0} } } cSup { size 8{ rightarrow } } = { { {b} cSup { size 8{ rightarrow } } } over { \lline {b} cSup { size 8{ rightarrow } } \lline } } } {} следува

{} pr b a size 12{"pr" rSub { size 8{ {b} cSup { size 6{ rightarrow } } } } {a} cSup { rightarrow } } {} = a b b 2 b size 12{ { { {a} cSup { rightarrow } cdot {b} cSup { rightarrow } } over {` \lline {b} cSup { rightarrow } \lline rSup { size 9{2}} } } {b} cSup { rightarrow } } {} .

Ортогоналната проекција на вектор врз вектор има примена во задачи во кои се бара даден вектор да се претстави како сума од два взаемно нормални вектори од кои едниот е со зададен правец. Така на пример, векторот a size 12{ {a} cSup { size 8{ rightarrow } } } {} може да се претстави како сума од два взаемно нормални вектори од кои едниот е во правец на векторот b size 12{ {b} cSup { size 8{ rightarrow } } } {} , тоа е векторот pr b a size 12{"pr" rSub { size 8{ {b} cSup { size 6{ rightarrow } } } } {a} cSup { rightarrow } } {} , а вториот е неговиот нормален вектор a -pr b a size 12{ {a} cSup { size 8{ rightarrow } } "-pr" rSub { size 8{ {b} cSup { size 6{ rightarrow } } } } {a} cSup { rightarrow } } {} .

Пример 1.

Да се пресмета pr c ( 3 a 2 b ) size 12{"pr" rSub { size 8{ {c} cSup { size 6{ rightarrow } } } } \( 3 {a} cSup { rightarrow } size 12{ - 2 {b} cSup { rightarrow } } size 12{ \) }} {} , ако a size 12{ {a} cSup { size 8{ rightarrow } } } {} = {-2, 1, 1}, b size 12{ {b} cSup { size 8{ rightarrow } } } {} = {1, 5, 0} и

c size 12{ {c} cSup { size 8{ rightarrow } } } {} = {4, 4, -2}.

Решение.

Векторот 3 a size 12{ {a} cSup { size 8{ rightarrow } } } {} - 2 b size 12{ {b} cSup { size 8{ rightarrow } } } {} = 3{-2, 1, 1} - 2{1, 5, 0} = {-8, -7, 3}.

Проекцијата pr c ( 3 a 2 b ) size 12{"pr" rSub { size 8{ {c} cSup { size 6{ rightarrow } } } } \( 3 {a} cSup { rightarrow } size 12{ - 2 {b} cSup { rightarrow } } size 12{ \) }} {} се пресметува со

pr c ( 3 a 2 b ) size 12{"pr" rSub { size 8{ {c} cSup { size 6{ rightarrow } } } } \( 3 {a} cSup { rightarrow } size 12{ - 2 {b} cSup { rightarrow } } size 12{ \) }} {} = 3 a 2 b c c 2 c size 12{ { { left (3 {a} cSup { rightarrow } - 2 {b} cSup { rightarrow } right ) cdot {c} cSup { rightarrow } } over { \lline {c} cSup { rightarrow } \lline rSup { size 9{2}} } } {c} cSup { rightarrow } } {} .

Бидејќи (3 a size 12{ {a} cSup { size 8{ rightarrow } } } {} - 2 b size 12{ {b} cSup { size 8{ rightarrow } } } {} )∙ c size 12{ {c} cSup { size 8{ rightarrow } } } {} = {-8, -7, 3}∙{4, 4, -2} = (-8)4 + (-7)4 + 3(-2) = -66 ,

c = 4 2 + 4 2 + ( 2 ) 2 = 6 size 12{ \lline {c} cSup { size 8{ rightarrow } } \lline `= sqrt {4 rSup { size 8{2} } +4 rSup { size 8{2} } + \( - 2 \) rSup { size 8{2} } } =6} {} ,

pr c ( 3 a 2 b ) = 66 6 2 c = 11 6 size 12{"pr" rSub { size 8{ {c} cSup { size 6{ rightarrow } } } } \( 3 {a} cSup { rightarrow } size 12{ - 2 {b} cSup { rightarrow } } size 12{ \) = { { - "66"} over {6 rSup {2} } } { size 12{c} } cSup { rightarrow } } size 12{ {}= { { - "11"} over {6} } }} {} {4, 4, -2} = { 22 3 , 22 3 , 11 3 size 12{ { { - "22"} over {3} } ,` { { - "22"} over {3} } ,` { { - "11"} over {3} } } {} }. ◄

Пример 2.

Покажи дека трите вектори a = 3 i j + 2 k size 12{ {a} cSup { size 8{ rightarrow } } =3 {i} cSup { size 8{ rightarrow } } - {j} cSup { size 8{ rightarrow } } +2 {k} cSup { size 8{ rightarrow } } } {} , b = i + j k size 12{ {b} cSup { size 8{ rightarrow } } = {i} cSup { size 8{ rightarrow } } + {j} cSup { size 8{ rightarrow } } - {k} cSup { size 8{ rightarrow } } } {} и c = i 5 j 4 k size 12{ {c} cSup { size 8{ rightarrow } } = {i} cSup { size 8{ rightarrow } } - 5 {j} cSup { size 8{ rightarrow } } - 4 {k} cSup { size 8{ rightarrow } } } {} се взаемно нормални вектори. Најди три скалари α size 12{α} {} , β size 12{β} {} и γ size 12{γ} {} такви што α a + β b + γ c = i j + k size 12{α {a} cSup { size 8{ rightarrow } } +β {b} cSup { size 8{ rightarrow } } +γ {c} cSup { size 8{ rightarrow } } = {i} cSup { size 8{ rightarrow } } - {j} cSup { size 8{ rightarrow } } + {k} cSup { size 8{ rightarrow } } } {} .

Решение.

Согласно својството 6, ако скаларниот производ на два ненулти вектори е нула, тогаш векторите се взаемно нормални. Трите зададени вектори се:

a = 3 i j + 2 k = { 3, 1,2 } size 12{ {a} cSup { size 8{ rightarrow } } =3 {i} cSup { size 8{ rightarrow } } - {j} cSup { size 8{ rightarrow } } +2 {k} cSup { size 8{ rightarrow } } = lbrace 3, - 1,2 rbrace } {} ,

b = i + j k = { 1,1, 1 } size 12{ {b} cSup { size 8{ rightarrow } } = {i} cSup { size 8{ rightarrow } } + {j} cSup { size 8{ rightarrow } } - {k} cSup { size 8{ rightarrow } } = lbrace 1,1, - 1 rbrace } {} ,

c = i 5 j 4 k = { 1, 5, 4 } size 12{ {c} cSup { size 8{ rightarrow } } = {i} cSup { size 8{ rightarrow } } - 5 {j} cSup { size 8{ rightarrow } } - 4 {k} cSup { size 8{ rightarrow } } = lbrace 1, - 5, - 4 rbrace } {} .

Се пресметуваат нивните меѓусебни скаларни производи:

a b = { 3, 1,2 } { 1,1, 1 } = 3 1 2 = 0 size 12{ {a} cSup { size 8{ rightarrow } } cdot {b} cSup { size 8{ rightarrow } } = lbrace 3, - 1,2 rbrace cdot lbrace 1,1, - 1 rbrace =3 - 1 - 2=0} {} ,

a c = { 3, 1,2 } { 1, 5, 4 } = 3 + 5 8 = 0 size 12{ {a} cSup { size 8{ rightarrow } } cdot {c} cSup { size 8{ rightarrow } } = lbrace 3, - 1,2 rbrace cdot lbrace 1, - 5, - 4 rbrace =3+5 - 8=0} {} ,

b c = { 1,1, 1 } { 1, 5, 4 } = 1 5 + 4 = 0 size 12{ {b} cSup { size 8{ rightarrow } } cdot {c} cSup { size 8{ rightarrow } } = lbrace 1,1, - 1 rbrace cdot lbrace 1, - 5, - 4 rbrace =1 - 5+4=0} {} .

Видејќи сите меѓусебни скаларни производи се нула, следува дек тие се взаемно нормални вектори, т.е. a b c size 12{ {a} cSup { size 8{ rightarrow } } ortho {b} cSup { size 8{ rightarrow } } ortho {c} cSup { size 8{ rightarrow } } } {} . Штом векторите a , b , c size 12{ {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } } {} се взаемно нормални, тие се линеарно независни (ниту еден од овие три вектори не може да се претстави како линерна комбинација од останатите два вектора) и секој вектор од просторот може да се претстави како линерна комбинација од овие три вектори. Во условот на овој пример се бара векторот i j + k size 12{ {i} cSup { size 8{ rightarrow } } - {j} cSup { size 8{ rightarrow } } + {k} cSup { size 8{ rightarrow } } } {} да се претстави како линерна комбинација од векторите a , b , c size 12{ {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } } {} , односно се бара да се најдат скалрите α size 12{α} {} , β size 12{β} {} и γ size 12{γ} {} така што

α a + β b + γ c = i j + k size 12{α {a} cSup { size 8{ rightarrow } } +β {b} cSup { size 8{ rightarrow } } +γ {c} cSup { size 8{ rightarrow } } = {i} cSup { size 8{ rightarrow } } - {j} cSup { size 8{ rightarrow } } + {k} cSup { size 8{ rightarrow } } } {} .

Ова векторска равенка се запишува преку координатите на векторите

α { 3, 1,2 } + β { 1,1, 1 } + γ { 1, 5, 4 } = { 1, 1,1 } size 12{α lbrace 3, - 1,2 rbrace +β lbrace 1,1, - 1 rbrace +γ lbrace 1, - 5, - 4 rbrace = lbrace 1, - 1,1 rbrace } {} ,

односно

{ + β + γ , α + β , β } = { 1, 1,1 } size 12{ lbrace 3α+β+γ, - α+β - 5γ,2α - β - 4γ rbrace = lbrace 1, - 1,1 rbrace } {}

и не доведува до следниот систем равенки

+ β + γ = 1 α + β = 1 β = 1 . alignl { stack { size 12{3α+β+γ=1} {} #size 12{ - α+β - 5γ= - 1} {} # size 12{2α - β - 4γ=1 "." } {}} } {}

За решавање на овој линеарен ситем од 3 равенки со 3 непознати најпрво ги наоѓаме неговите 4 детерминанти:

D = 3 1 1 1 1 5 2 1 4 = 42 0 size 12{D= lline matrix { 3 {} # 1 {} # 1 {} ##- 1 {} # 1 {} # - 5 {} ## 2 {} # - 1 {} # - 4{}} rline = - "42"<>0} {} ,

D α = 1 1 1 1 1 5 1 1 4 = 18 size 12{D rSub { size 8{α} } = lline matrix { 1 {} # 1 {} # 1 {} ##- 1 {} # 1 {} # - 5 {} ## 1 {} # - 1 {} # - 4{}} rline = - "18"} {} ,

D β = 3 1 1 1 1 5 2 1 4 = 14 size 12{D rSub { size 8{β} } = lline matrix { 3 {} # 1 {} # 1 {} ##- 1 {} # - 1 {} # - 5 {} ## 2 {} # 1 {} # - 4{}} rline ="14"} {} ,

D γ = 3 1 1 1 1 1 2 1 1 = 2 size 12{D rSub { size 8{γ} } = lline matrix { 3 {} # 1 {} # 1 {} ##- 1 {} # 1 {} # - 1 {} ## 2 {} # - 1 {} # 1{}} rline = - 2} {} .

Ги определуваме непознатите скалари преку:

α = D α D = 18 42 = 3 7 , β = D β D = 14 42 = 1 3 , γ = D γ D = 2 42 = 1 21 . alignl { stack { size 12{α= { {D rSub { size 8{α} } } over {D} } = { { - "18"} over { - "42"} } = { {3} over {7} } ,} {} #β= { {D rSub { size 8{β} } } over {D} } = { {"14"} over { - "42"} } = - { {1} over {3} } , {} # γ= { {D rSub { size 8{γ} } } over {D} } = { { - 2} over { - "42"} } = { {1} over {"21"} } "." {}} } {}

Тоа значи дека векторот i j + k size 12{ {i} cSup { size 8{ rightarrow } } - {j} cSup { size 8{ rightarrow } } + {k} cSup { size 8{ rightarrow } } } {} се претставува како линерна комбинација од векторите a , b , c size 12{ {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } } {} со равенката

3 7 a 1 3 b + 1 21 c = i j + k . size 12{ { {3} over {7} } {a} cSup { size 8{ rightarrow } } - { {1} over {3} } {b} cSup { size 8{ rightarrow } } + { {1} over {"21"} } {c} cSup { size 8{ rightarrow } } = {i} cSup { size 8{ rightarrow } } - {j} cSup { size 8{ rightarrow } } + {k} cSup { size 8{ rightarrow } } "." } {}

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Векторска алгебра. OpenStax CNX. Mar 11, 2009 Download for free at http://cnx.org/content/col10672/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Векторска алгебра' conversation and receive update notifications?

Ask
Brooke Delaney
Start Exam
Briana Knowlton
Start Quiz