<< Chapter < Page Chapter >> Page >

Computational experiment

Experiment design

We wanted to determine the most computationally efficient demodulation method for the digital multitone scheme. In our experiment, we compared the operation counts of an optimized FFT meta algorithm, a partial DFT computation (the DFT computed only for the nonzero coefficients), and FFAST in demodulating various message signals. We chose these demodulation methods because they are currently the most efficient methods for DMT demodulation. The experiments were run using MATLAB 2014a. We chose to run our experiment in MATLAB for its rapid prototyping environment.

While we were interested in comparing the computational efficiency of these algorithms, we chose to record operation counts rather than run times. Run times are unreliable metrics on machines with multitasking operating systems, especially when using highly optimized programs like MATLAB. We chose to count complex additions and multiplications as one operation each. We did not count conditional statements as operations because in most general processors, they only require a single cycle. We counted complex exponentials and trigonometric functions as one operation because they may be implemented using lookup tables.

Meta-fft algorithm implementation

The two main goals for our implementation of the optimized FFT meta algorithm were to i) create an algorithm that performs without the need to zero-pad the signal and ii) allows us to count operations. Well-behaved signal lengths in our implementation of the algorithm have the form of N = n 0 n 1 n 2 , where n i are coprimes. To exploit this structure, the optimized FFT meta algorithm, implemented in meta_fft.m , uses a self-sorting mixed-radix complex FFT [link] . For sub-transforms of length 2 N 6 , short-length Winograd transforms are applied to conserve operation count. All other transforms are computed using Rader's FFT algorithm [link] .

Ffast implementation

The FFAST algorithm implementation requires the signal itself, the length of the signal, and a vector of the downsampling coefficients.

The FFAST algorithm was implemented in two files. The first file, ffast_front_end.m , downsamples the signal by each of the coprimes and feeds shifted and unshifted versions of the downsampling to the meta_fft.m file, to get operation counts and the relevant FFTs. Once the relevant DFT pairs are generated, ffast_front_end.m calls the back end of the algorithm.

The second file, peeling_decoder.m , implements the peeling module of FFAST to backsolve the bipartite graph. The program will return a flag if the algorithm encounters no singletons at a stage where it has not been fully solved.

Numerical results

In our first experiment, we varied the signal length N and observed the operation counts required for the optimized FFT meta algorithm, the partial DFT, and FFAST. We constructed each signal in the Fourier domain by randomly selecting k values from the set of integers { 1 , , N } and setting the corresponding DFT coefficients to k 2 . For each signal, we put k = N 1 / 3 , which is the greatest allowed sparsity in our scheme. The choice of k and values of the k nonzero DFT coefficients are consistent with the DMT scheme. We used MATLAB's library function ifft() to compute the corresponding signal and counted the number of operations it took each algorithm to compute the DFT. We observed that the operation count required for FFAST was usually an order of magnitude less that the operation counts required for both the meta FFT algorithm and the partial DFT. See Fig  [link] for the results of the first experiment.

Experiment 1

In our second experiment, we varied the signal sparsity k and observed the operation count required for the optimized FFT meta algorithm, the partial DFT, and FFAST. For this experiment, signal length N = 8740 and the signals were constructed in the Fourier domain, as before. We observed an 80 % computational decrease from the optimized FFT to FFAST for all k < N 1 3 . However, for k > N 1 3 , we observed signals for which FFAST did not converge. See Fig  [link] for the results of the second experiment.

Experiment 2

Note that the operation count for the partial DFT is less than the operation count for FFAST for k < 8 ; this is somewhat misleading because the way that the partial DFT is computed is slightly optimistic. The partial DFT computes only the nonzero coefficients, which are known a priori in this experiment. In the general framework of DMT, one would need to compute all possibly nonzero DFT coefficients, resulting in an operation count higher than that of FFAST.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Using ffast to decrease computation time in digital multitone communication. OpenStax CNX. Dec 17, 2014 Download for free at http://legacy.cnx.org/content/col11731/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Using ffast to decrease computation time in digital multitone communication' conversation and receive update notifications?

Ask