# 0.4 Bases, orthogonal bases, biorthogonal bases, frames, tight

 Page 1 / 5
Development of ideas of vector expansion

Most people with technical backgrounds are familiar with the ideas of expansion vectors or basis vectors and of orthogonality; however, therelated concepts of biorthogonality or of frames and tight frames are less familiar but also important. In the study of wavelet systems, we find thatframes and tight frames are needed and should be understood, at least at a superficial level. One can find details in [link] , [link] , [link] , [link] , [link] . Another perhaps unfamiliar concept is that of an unconditional basis usedby Donoho, Daubechies, and others [link] , [link] , [link] to explain why wavelets are good for signal compression, detection, and denoising [link] , [link] . In this chapter, we will very briefly define and discuss these ideas. At this point, you may want to skip thesesections and perhaps refer to them later when they are specifically needed.

## Bases, orthogonal bases, and biorthogonal bases

A set of vectors or functions ${f}_{k}\left(t\right)$ spans a vector space $F$ (or $F$ is the Span of the set) if any element of that space can be expressed as a linear combination of members of thatset, meaning: Given the finite or infinite set of functions ${f}_{k}\left(t\right)$ , we define ${\mathrm{Span}}_{k}\left\{{f}_{k}\right\}=F$ as the vector space with all elements of the space of the form

$g\left(t\right)=\sum _{k}\phantom{\rule{0.277778em}{0ex}}{a}_{k}\phantom{\rule{0.277778em}{0ex}}{f}_{k}\left(t\right)$

with $k\in \mathbf{Z}$ and $t,a\in \mathbf{R}$ . An inner product is usually defined for this space and is denoted $⟨f\left(t\right),g\left(t\right)⟩$ . A norm is defined and is denoted by $\parallel f\parallel =\sqrt{⟨f,f⟩}$ .

We say that the set ${f}_{k}\left(t\right)$ is a basis set or a basis for a given space $F$ if the set of $\left\{{a}_{k}\right\}$ in [link] are unique for any particular $g\left(t\right)\in F$ . The set is called an orthogonal basis if $⟨{f}_{k}\left(t\right),{f}_{\ell }\left(t\right)⟩=0$ for all $k\ne \ell$ . If we are in three dimensional Euclidean space, orthogonal basis vectors are coordinate vectors that are at right (90 o ) angles to each other. We say the set is an orthonormal basis if $⟨{f}_{k}\left(t\right),{f}_{\ell }\left(t\right)⟩=\delta \left(k-\ell \right)$ i.e. if, in addition to being orthogonal, the basis vectors are normalized to unity norm: $\parallel {f}_{k}\left(t\right)\parallel =1$ for all $k$ .

From these definitions it is clear that if we have an orthonormal basis, we can express any element in the vector space, $g\left(t\right)\in F$ , written as [link] by

$g\left(t\right)=\sum _{k}⟨g\left(t\right),\phantom{\rule{0.166667em}{0ex}}{f}_{k}\left(t\right)⟩\phantom{\rule{0.277778em}{0ex}}{f}_{k}\left(t\right)$

since by taking the inner product of ${f}_{k}\left(t\right)$ with both sides of [link] , we get

${a}_{k}=⟨g\left(t\right),\phantom{\rule{0.166667em}{0ex}}{f}_{k}\left(t\right)⟩$

where this inner product of the signal $g\left(t\right)$ with the basis vector ${f}_{k}\left(t\right)$ “picks out" the corresponding coefficient ${a}_{k}$ . This expansion formulation or representation is extremely valuable. It expresses [link] as an identity operator in the sense that the inner product operates on $g\left(t\right)$ to produce a set of coefficients that, when used to linearly combine the basis vectors, gives back the original signal $g\left(t\right)$ . It is the foundation of Parseval's theorem which says the norm or energycan be partitioned in terms of the expansion coefficients ${a}_{k}$ . It is why the interpretation, storage, transmission, approximation, compression, andmanipulation of the coefficients can be very useful. Indeed, [link] is the form of all Fourier type methods.

Although the advantages of an orthonormal basis are clear, there are cases where the basis system dictated by the problem is not and cannot (orshould not) be made orthogonal. For these cases, one can still have the expression of [link] and one similar to [link] by using a dual basis set ${\stackrel{˜}{f}}_{k}\left(t\right)$ whose elements are not orthogonal to each other, but to the corresponding element of the expansion set

how do I set up the problem?
what is a solution set?
Harshika
find the subring of gaussian integers?
Rofiqul
hello, I am happy to help!
Abdullahi
hi mam
Mark
find the value of 2x=32
divide by 2 on each side of the equal sign to solve for x
corri
X=16
Michael
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
Beyan
yes i wantt to review
Mark
use the y -intercept and slope to sketch the graph of the equation y=6x
how do we prove the quadratic formular
Darius
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
thank you help me with how to prove the quadratic equation
Seidu
may God blessed u for that. Please I want u to help me in sets.
Opoku
what is math number
4
Trista
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
can you teacch how to solve that🙏
Mark
Solve for the first variable in one of the equations, then substitute the result into the other equation. Point For: (6111,4111,−411)(6111,4111,-411) Equation Form: x=6111,y=4111,z=−411x=6111,y=4111,z=-411
Brenna
(61/11,41/11,−4/11)
Brenna
x=61/11 y=41/11 z=−4/11 x=61/11 y=41/11 z=-4/11
Brenna
Need help solving this problem (2/7)^-2
x+2y-z=7
Sidiki
what is the coefficient of -4×
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years? Kala Reply lim x to infinity e^1-e^-1/log(1+x) given eccentricity and a point find the equiation Moses Reply A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place. Kimberly Reply Jeannette has$5 and \$10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
What is the expressiin for seven less than four times the number of nickels
How do i figure this problem out.
how do you translate this in Algebraic Expressions
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Got questions? Join the online conversation and get instant answers!