<< Chapter < Page Chapter >> Page >
80 0 10
0 5 4 1 50
20 3 2 20 6
70 7 9 11

3- Phân vào ô (2,1) 20 . Hàng (2) bị xóa . Cột (1) còn thu 80-20=60

60 0 10
0 5 4 1 50
0 3 20 2 20 6
70 7 9 11

4- Phân vào ô (3,1) 60 . Cột (1) bị xóa . Hàng (3) còn phát 70-60=10

0 0 10
0 5 4 1 50
0 3 20 2 20 6
10 7 60 9 11

5- Phân vào ô (3,3) 10. Hết hàng.

0 0 0
0 5 4 1 50
0 3 20 2 20 6
0 7 60 9 11 10

Đã có 5 ô được chọn, chúng tạo thành một phương án cơ bản không suy biến vì số ô bằng với m+n-1=3+3-1.

Thuật toán "quy 0 cước phí các ô chọn"

Định lý

Nếu cộng vào hàng i và cột j của ma trận cước phí C=[cij] một số tùy ý ri và sj thì bài toán vận tải mới với ma trận cước phí mới C'=[c'ij=cij+ri+sj]thì phương án tối ưu của bài toán này cũng là phương án tối ưu của bài toán kia và ngược lại.

Thuật toán "Quy 0 cước phí các ô chọn" gồm ba giai đoạn.

Giai đoạn 1 : quy 0 cước phí các ô chọn

Sau khi xác định được phương án cơ bản có m+n-1 ô chọn, người ta cộng vào mỗi hàng i và mỗi cột j của ma trận cước phí C=[cij] một số ri và sj sao cho ma trận cước phí mới C' tại các ô chọn thỏa c'ij=cij+ri+sj=0.

Tiếp tục ví dụ trên ta thấy :

5 4 1 50 r1=6
3 20 2 20 6 r2=0
7 60 9 11 10 r3=-4
s1=-3 s2=-2 s3=-7

Các giá trị cộng vào phải thỏa hệ phương trình :

1 + r 1 + s 3 = 0 3 + r 2 + s 1 = 0 2 + r 2 + s 2 = 0 7 + r 3 + s 1 = 0 11 + r 3 + s 3 = 0 { { { { size 12{alignl { stack { left lbrace 1+r rSub { size 8{1} } +s rSub { size 8{3} } =0 {} #right none left lbrace 3+r rSub { size 8{2} } +s rSub { size 8{1} } =0 {} # right none left lbrace 2+r rSub { size 8{2} } +s rSub { size 8{2} } =0 {} #right none left lbrace 7+r rSub { size 8{3} } +s rSub { size 8{1} } =0 {} # right none left lbrace "11"+r rSub { size 8{3} } +s rSub { size 8{3} } =0 {} #right no } } lbrace } {}

Chọn r2=0 , giải hệ ta được kết quả trên

Ma trận cước phí mới thu được là :

8 8 0 50
0 20 0 20 -1
0 60 3 0 10

Giai đoạn 2 : kiểm tra tính tối ưu

Sau khi quy 0 cước phí các ô chọn nếu : các ô loại đều có cước phí  0 thì phương án đang xét là tối ưu, ngược lại thì chuyển sang giai đoạn 3

Trong ví dụ này ta chuyển sang giai đoạn 3.

Giai đoạn 3 : xây dựng phương án mới tốt hơn

1- Tìm ô đưa vào.

Ô đưa vào là ô loại (i*,j*) có cước phí nhỏ nhất và trở thành ô chọn

Trong ví dụ này là ô (2,3).

2- Tìm chu trình điều chỉnh.

Chu trình điều chỉnh được tìm bằng cách bổ sung ô (i*,j*) vào m+n-1 ô chọn ban đầu, khi đó sẽ xuất hiện một chu trình duy nhất, gọi là chu trình điều chỉnh V .

Trong ví dụ này chu trình điều chỉnh là :

V : (2,3) (3,3) (3,1) (2,1) (2,3)

3- Phân ô chẵn lẻ cho chu trình điều chỉnh.

Đánh số thứ tự các ô trong chu trình điều chỉnh V bắt đầu từ ô (i*,j*). Khi đó chu trình điều chỉnh V được phân thành hai lớp :

VC : các ô có số thứ tự chẵn.

VL : các ô có số thứ tự lẻ.

4- Tìm ô đưa ra và lượng điều chỉnh.

Trong số các ô có thứ tự chẵn chọn ô (r,s) được phân phối ít hàng nhất làm ô đưa ra, trở thành ô loại. Lượng hàng xrs ở ô đưa ra gọi là lượng điều chỉnh.

Trong ví dụ này ô đưa ra là ô (3,3), lượng điều chỉnh là 10.

5- Lập phương án mới.

Phương án mới có được bằng cách thêm hoặc bớt lượng điều chỉnh trên chu trình điều chỉnh như sau :

Ô có thứ tự chẵn bị bớt đi lượng điều chỉnh.

Ô có thứ tự lẻ được cộng thêm lượng điều chỉnh.

Ô ngoài chu trình điều chỉnh không thay đổi

Trong ví dụ này ta thấy những ô trong chu trình điều chỉnh có sự thay đổi như sau :

Ô (2,3) được thêm 10 trở thành 10

Ô (3,3) bị bớt 10 trở thành 0

Ô (3,1) được thêm 10 trở thành 70

Ô (2,1) bị bớt 10 nên trở thành 10

Khi đó phương án mới là :

8 8 0 50
0 10 0 20 -1 10
0 70 3 0

Quay về giai đoạn 1.

Giai đoạn 1 : quy 0 cước phí ô chọn

8 8 0 50 r1=-1
0 10 0 20 -1 10 r2=0
0 70 3 0 r3=0
s1=0 s2=0 s3=1

Ma trận cước phí mới là :

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Quy hoạch tuyến tính. OpenStax CNX. Aug 08, 2009 Download for free at http://cnx.org/content/col10903/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Quy hoạch tuyến tính' conversation and receive update notifications?

Ask