<< Chapter < Page Chapter >> Page >

Introduction

Magnetism is a force that certain kinds of objects, which are called `magnetic' objects, can exert on each other without physically touching. A magnetic object is surrounded by a magnetic `field' that gets weaker as one moves further away from the object. A second object can feel a magnetic force from the first object because it feels the magnetic field of the first object.

Humans have known about magnetism for many thousands of years. For example, lodestone is a magnetised form of the iron oxide mineral magnetite . It has the property of attracting iron objects. It is referred to in old European and Asian historicalrecords; from around 800 BCE in Europe and around 2 600 BCE in Asia.

Interesting fact

The root of the English word magnet is from the Greek word magnes , probably from Magnesia in Asia Minor, once an important source of lodestone.

Magnetic fields

A magnetic field is a region in space where a magnet or object made of magnetic material will experience a non-contact force.

Electrons inside any object have magnetic fields associated with them. In most materials these fields point in alldirections, so the net magnetic field is zero. For example, in the plastic ball below, the directions of the magnetic fields of the electrons (shown by the arrows) are pointingin different directions and cancel each other out. Therefore the plastic ball is not magnetic and has no magnetic field.

In some materials (e.g. iron), called ferromagnetic materials, there are regions called domains , where the electrons' magnetic fields line up with each other. All the atoms in each domain are grouped together so that the magnetic fields from their electrons point the same way. The picture shows a piece of an iron needle zoomed in to show the domains with the electric fields lined up inside them.

In permanent magnets, many domains are lined up, resulting in a net magnetic field . Objects made from ferromagnetic materials can be magnetised, for example by rubbing a magnetalong the object in one direction. This causes the magnetic fields of most, or all, of the domains to line up in one direction. As a result the object as a whole will have a net magnetic field. It is magnetic . Once a ferromagnetic object has been magnetised, it can stay magnetic without another magnet being nearby (i.e. without being in another magnetic field). In the picture below, the needle has been magnetised because the magnetic fields in all the domains are pointing in the same direction.

Investigation : ferromagnetic materials and magnetisation

  1. Find 2 paper clips. Put the paper clips close together and observe what happens.
    1. What happens to the paper clips?
    2. Are the paper clips magnetic?
  2. Now take a permanent bar magnet and rub it once along 1 of the paper clips. Remove the magnet and put the paper clip which was touched by the magnet close to the other paper clip and observe what happens. Does the untouched paper clip feel a force on it? If so, is the force attractive or repulsive?
  3. Rub the same paper clip a few more times with the bar magnet, in the same direction as before. Put the paper clip close to the other one and observe what happens.
    1. Is there any difference to what happened in step 2?
    2. If there is a difference, what is the reason for it?
    3. Is the paper clip which was rubbed repeatedly by the magnet now magnetised?
    4. What is the difference between the two paper clips at the level of their atoms and electrons?
  4. Now, find a metal knitting needle, or a metal ruler, or other metal object. Rub the bar magnet along the knitting needle a few times in the same direction. Now put the knitting needle close to the paper clips and observe what happens.
    1. Does the knitting needle attract the paper clips?
    2. What does this tell you about the material of the knitting needle? Is it ferromagnetic?
  5. Repeat this experiment with objects made from other materials. Which materials appear to be ferromagnetic and which are not? Put your answers in a table.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 physical science [caps]. OpenStax CNX. Sep 30, 2011 Download for free at http://cnx.org/content/col11305/1.7
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 physical science [caps]' conversation and receive update notifications?

Ask