<< Chapter < Page Chapter >> Page >
When commerce goes electronic, the means of paying for goods and services must also go electronic. This module discusses four methods of electronic payment.

This is an adaptation of an excerpt from "Electronic Commerce: The Strategic Perspective" © 2008 by Richard T. Watson, Pierre Berthon, Leyland F. Pitt, and George M. Zinkhan, used under a Creative Commons Attribution license: Creative Commons Attribution 3.0 License .

Electronic funds transfer

Electronic funds transfer (EFT), introduced in the late 1960s, uses the existing banking structure to support a wide variety of payments. For example, consumers can establish monthly checking account deductions for utility bills, and banks can transfer millions of dollars. EFT is essentially electronic checking. Instead of writing a check and mailing it, the buyer initiates an electronic checking transaction (e.g., using a debit card at a point-of-sale terminal). The transaction is then electronically transmitted to an intermediary (usually the banking system), which transfers the funds from the buyer's account to the seller's account. A banking system has one or more common clearinghouses that facilitate the flow of funds between accounts in different banks.

Electronic checking is fast; transactions are instantaneous. Paper handling costs are substantially reduced. Bad checks are no longer a problem because the seller's account balance is verified at the moment of the transaction. EFT is flexible; it can handle high volumes of consumer and commercial transactions, both locally and internationally. The international payment clearing system, consisting of more than 100 financial institutions, handles more than one trillion dollars per day.

The major shortfall of EFT is that all transactions must pass through the banking system, which is legally required to record every transaction. This lack of privacy can have serious consequences where as cash gives anonymity.

Digital cash

Digital cash is an electronic parallel of notes and coins. Two variants of digital cash are presently available: prepaid cards and smart cards. The phonecard, the most common form of prepaid card, was first issued in 1976 by the forerunner of Telecom Italia. The problem with special-purpose cards, such as phone and photocopy cards, is that people end up with a purse or wallet full of cards. A smart card combines many functions into one card. A smart card can serve as personal identification, credit card, ATM card, telephone credit card, critical medical information record and as cash for small transactions. A smart card, containing memory and a microprocessor, can store as much as 100 times more data than a magnetic-stripe card. The microprocessor can be programmed.

The stored-value card, the most common application of smart card technology, can be used to purchase a wide variety of items (e.g,. fast food, parking, public transport tickets). Consumers buy cards of standard denominations (e.g., USD 50 or USD 100) from a card dispenser or bank. When the card is used to pay for an item, it must be inserted in a reader. Then, the amount of the transaction is transferred to the reader, and the value of the card is reduced by the transaction amount.

The problem with digital cash, like real cash, is that you can lose it or it can be stolen. It is not as secure as the other alternatives, but most people are likely to carry only small amounts of digital cash and thus

security is not so critical. As smart cards are likely to have a unique serial number, consumers can limit their loss by reporting a stolen or misplaced smart card to invalidate its use. Adding a PIN number to a smart card can raise its security level.

Twenty million smart cards are already in use in France, where they were introduced a decade earlier. In Austria, 2.5 million consumers carry a card that has an ATM magnetic stripe as well as a smart card chip. Storedvalue cards are likely to be in widespread use in the United States within five years. Their wide-scale adoption could provide substantial benefits. Counting, moving, storing and safeguarding cash is estimated to be 4 percent of the value of all transactions. There are also significant benefits to be gained because banks don't have to hold as much cash on hand, and thus have more money available for investment.

Ecash

Digicash of Amsterdam has developed an electronic payment system called ecash that can be used to withdraw and deposit electronic cash over the Internet. The system is designed to provide secure payment between computers using e-mail or the Internet. Ecash can be used for everyday Internet transactions, such as buying software, receiving money from parents, or paying for a pizza to be delivered. At the same time, ecash provides the privacy of cash because the payer can remain anonymous.

To use ecash, you need a digital bank account and ecash client software. The client is used to withdraw ecash from your bank account, and store it on your personal computer. You can then spend the money at any location accepting ecash or send money to someone who has an ecash account.

The security system is based on public-key cryptography and passwords. You need a password to access your account and electronic transactions are encrypted.

Credit card

Credit cards are a safe, secure, and widely used remote payment system. Millions of people use them every day for ordering goods by phone. Furthermore, people think nothing of handing over their card to a restaurant server, who could easily find time to write down the card's details. In the case of fraud in the U.S., banks already protect consumers, who are typically liable for only the first USD 50. So, why worry about sending your credit card number over the Internet? The development of secure servers and clients has made transmitting credit card numbers extremely safe. The major shortcoming of credit cards is that they do not support person-to-person transfers and do not have the privacy of cash.

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Introduction to electronic commerce. OpenStax CNX. Mar 26, 2015 Download for free at http://legacy.cnx.org/content/col11773/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introduction to electronic commerce' conversation and receive update notifications?

Ask