# 0.3 Discrete structures logic  (Page 3/23)

 Page 3 / 23

In everyday life we often combine propositions to form more complex propositions without paying much attention to them. For example combining "Grass is green", and "The sun is red" we say something like "Grass is green and the sun is red", "If the sun is red, grass is green", "The sun is red and the grass is not green" etc. Here "Grass is green", and "The sun is red" are propositions, and form them using connectives "and", "if... then ..." and "not" a little more complex propositions are formed. These new propositions can in turn be combined with other propositions to construct more complex propositions. They then can be combined to form even more complex propositions. This process of obtaining more and more complex propositions can be described more generally as follows:

Let X and Y represent arbitrary propositions. Then [¬X], [X⋀Y], [X⋁Y], [X→Y], and [X↔Y] are propositions.

Note that X and Y here represent an arbitrary proposition. This is actually a part of more rigorous definition of proposition which we see later.

Example : [ P → [Q ⋁ R] ]is a proposition and it is obtained by first constructing [Q ⋁ R] by applying [X ⋁ Y]to propositions Q and R considering them as X and Y, respectively, then by applying [ X→Y ] to the two propositions P and [Q ⋁ R]considering them as X and Y, respectively.

Note: Rigorously speaking X and Y above are place holders for propositions, and so they are not exactly a proposition. They are called a propositional variable, and propositions formed from them using connectives are called a propositional form. However, we are not going to distinguish them here, and both specific propositions such as "2 is greater than 1" and propositional forms such as (P ⋁Q) are going to be called a proposition.

## Converse and contrapositive

For the proposition P→Q, the proposition Q→P is called its converse, and the proposition ¬ Q→ ¬ P is called its contrapositive.

For example for the proposition "If it rains, then I get wet",

Converse: If I get wet, then it rains.

Contrapositive: If I don't get wet, then it does not rain.

The converse of a proposition is not necessarily logically equivalent to it, that is they may or may not take the same truth value at the same time.

On the other hand, the contrapositive of a proposition is always logically equivalent to the proposition. That is, they take the same truth value regardless of the values of their constituent variables. Therefore, "If it rains, then I get wet." and "If I don't get wet, then it does not rain." are logically equivalent. If one is true then the other is also true, and vice versa.

## If_then variations

If-then statements appear in various forms in practice. The following list presents some of the variations. These are all logically equivalent, that is as far as true or false of statement is concerned there is no difference between them. Thus if one is true then all the others are also true, and if one is false all the others are false.

• If p, then q.
• p implies q.
• If p, q.
• p only if q.
• p is sufficient for q.
• q if p.
• q whenever p.
• q is necessary for p.
• It is necessary for p that q.

anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!