# 0.3 Beer's law and data analysis  (Page 2/3)

 Page 2 / 3

Complementary colors can be determined using an artist's color wheel. The wheel shows the colors of the visible spectrum, from red to violet. Complementary colors, such as orange and blue, appear as wedges opposite each other on the wheel.

With our eye, we can make qualitative judgments about the color(s) of light a sample absorbs. However, given a red solution of $\left[\text{Ti}\left({H}_{2}O{\right)}_{6}{\right]}^{3+}$ we can not determine if it absorbs green light or if it absorbs all colors of light but red. To quantitatively determine the amount of light absorbed by a sample as a function of wavelength, we will measure its absorption spectrum using a UV-visible spectrophotometer. Typical absorption spectra of aqueous $\left[\text{Ti}\left({H}_{2}O{\right)}_{6}{\right]}^{3+}$ solutions are shown below.

Notice the absorption maximum is at 490 nm. Because the sample absorbs more strongly in the green and yellow regions of the visible spectrum, it appears red-violet. Measuring the absorption spectrum of a second, more dilute solution demonstrates that the spectrum changes as a function of the concentration of the solution. To understand how to use the absorption spectrum as a quantitative tool for chemical analysis, read on!

Spectrophotmetric Basics

The essential components of a spectrophotometer consist of a radiation source, a wavelength selector (monochromator), a photodetector and read-out device.

The incident light from a tungsten (visible light source) or deuterium (UV light source) lamp is focused by a lens and passes through an entrance slit. By passing the beam through the monochromator (either a prism or a diffraction grating) it is separated into monochromatic (i.e., one-color or single-wavelength) light. One particular wavelength of monochromatic light is selected and allowed to pass through the exit slit into the sample. Light transmitted through the sample is detected by a photodetector which converts the signal to an electrical current which is measured by a galvanometer and sent to a recording device, typically a computer.

The measurement of transmittance (T) is made by determining the ratio of the intensity of incident ( ${I}_{0}$ ) and transmitted (I) light passing through pure solvent and sample solutions as a function of wavelength. [Note: The percent transmittance (%T) is obtained by multiplication of T by 100.] The logarithm of the reciprocal of the transmittance is called the absorbance (A),

A = log (1 / T)

Care must be taken when small values of transmittance are being measured as stray light from either the room or scattering within the instrument can cause large errors in your readings!

## Extracting quantitative information

The Beer-Lambert law relates the amount of light being absorbed to the concentration of the substance absorbing the light and the pathlength through which the light passes:

$A=\text{εbc}\text{.}$

In this equation, the measured absorbance (A) is related to the molar absorptivity constant ( $\epsilon$ ), the path length (b), and the molar concentration (c) of the absorbing. The concentration is directly proportional to absorbance.

The single largest application of the spectrophotometer is for quantitative analysis. The prerequisite for such analysis is a known absorption spectrum of the compound under investigation. Of particular importance is the maximum absorption (at ${\lambda }_{\text{max}}$ ) [Why choose the maximum? Could the choice alter the precision of our experiment? the accuracy?], which can be easily obtained by plotting absorbance vs. wavelength at a fixed concentration. Next, a series of solutions of known concentration are prepared and their absorbance is measured at ${\lambda }_{\text{max}}$ . Plotting absorbance vs. concentration, a calibration curve can be determined and fit using linear regression (least-squares fit). An unknown concentration can be deduced by measuring absorbance at the absorption maximum and comparing it to the standard curve. Caution: The Beer-Lambert Law is only obeyed (the standard curve is linear) for reasonably dilute solutions. Only those points in the linear range of the standard curve may be used for accurate concentration determination.

how can chip be made from sand
is this allso about nanoscale material
Almas
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Got questions? Join the online conversation and get instant answers!