<< Chapter < Page
  Radicals   Page 1 / 1
Chapter >> Page >
This module covers techniques for the simplification of radicals.

Simplifying radicals

The property ab size 12{ sqrt { ital "ab"} } {} = a size 12{ sqrt {a} } {} b size 12{ sqrt {b} } {} can be used to simplify radicals. The key is to break the number inside the root into two factors, one of which is a perfect square .

Simplifying a radical

75 size 12{ sqrt {"75"} } {}
= 25 3 because 25•3 is 75, and 25 is a perfect square
= 25 3 because ab size 12{ sqrt { ital "ab"} } {} = a size 12{ sqrt {a} } {} b size 12{ sqrt {b} } {}
= 5 3 size 12{ sqrt {3} } {} because 25 =5

So we conclude that 75 size 12{ sqrt {"75"} } {} =5 3 size 12{ sqrt {3} } {} . You can confirm this on your calculator (both are approximately 8.66).

We rewrote 75 as 25 3 because 25 is a perfect square. We could, of course, also rewrite 75 as 5 15 , but—although correct—that would not help us simplify, because neither number is a perfect square.

Simplifying a radical in two steps

180
= 9•20 because 9 20 is 180, and 9 is a perfect square
= 9 20 because ab size 12{ sqrt { ital "ab"} } {} = a size 12{ sqrt {a} } {} b size 12{ sqrt {b} } {}
= 3 20 So far, so good. But wait! We’re not done!
= 3 4•5 There’s another perfect square to pull out!
= 3 4 5
= 3 ( 2 ) 5
= 6 5 Now we’re done.

The moral of this second example is that after you simplify, you should always look to see if you can simplify again .

A secondary moral is, try to pull out the biggest perfect square you can. We could have jumped straight to the answer if we had begun by rewriting 180 as 36 5 .

This sort of simplification can sometimes allow you to combine radical terms, as in this example:

Combining radicals

75 size 12{ sqrt {"75"} } {} 12 size 12{ sqrt {"12"} } {}
= 5 3 size 12{ sqrt {3} } {} –2 3 size 12{ sqrt {3} } {} We found earlier that 75 size 12{ sqrt {"75"} } {} = 5 3 size 12{ sqrt {3} } {} . Use the same method to confirm that 12 size 12{ sqrt {"12"} } {} = 2 3 size 12{ sqrt {3} } {} .
= 3 3 size 12{ sqrt {3} } {} 5 of anything minus 2 of that same thing is 3 of it, right?

That last step may take a bit of thought. It can only be used when the radical is the same. Hence, 2 size 12{ sqrt {2} } {} + 3 size 12{ sqrt {3} } {} cannot be simplified at all. We were able to simplify 75 size 12{ sqrt {"75"} } {} 12 size 12{ sqrt {"12"} } {} only by making the radical in both cases the same .

So why does 5 3 size 12{ sqrt {3} } {} –2 3 size 12{ sqrt {3} } {} = 3 3 size 12{ sqrt {3} } {} ? It may be simplest to think about verbally: 5 of these things, minus 2 of the same things, is 3 of them. But you can look at it more formally as a factoring problem, if you see a common factor of 3 size 12{ sqrt {3} } {} .

5 3 size 12{ sqrt {3} } {} –2 3 size 12{ sqrt {3} } {} = 3 size 12{ sqrt {3} } {} ( 5 2 ) = 3 size 12{ sqrt {3} } {} ( 3 ) .

Of course, the process is exactly the same if variable are involved instead of just numbers!

Combining radicals with variables

x 3 2 + x 5 2
= x 3 + x 5 Remember the definition of fractional exponents!
= x 2 * x + x 4 * x As always, we simplify radicals by factoring them inside the root...
x 2 * x + x 4 * x and then breaking them up...
= x x + x 2 x and then taking square roots outside!
= ( x 2 + x ) x Now that the radical is the same, we can combine.

Rationalizing the denominator

It is always possible to express a fraction with no square roots in the denominator.

Is it always desirable? Some texts are religious about this point: “You should never have a square root in the denominator.” I have absolutely no idea why. To me, 1 2 size 12{ { {1} over { sqrt {2} } } } {} looks simpler than 2 2 size 12{ { { sqrt {2} } over {2} } } {} ; I see no overwhelming reason for forbidding the first or preferring the second.

However, there are times when it is useful to remove the radicals from the denominator: for instance, when adding fractions. The trick for doing this is based on the basic rule of fractions: if you multiply the top and bottom of a fraction by the same number, the fraction is unchanged. This rule enables us to say, for instance, that 2 3 size 12{ { {2} over {3} } } {} is exactly the same number as 2 3 3 3 size 12{ { {2 cdot 3} over {3 cdot 3} } } {} = 6 9 size 12{ { {6} over {9} } } {} .

In a case like 1 2 size 12{ { {1} over { sqrt {2} } } } {} , therefore, you can multiply the top and bottom by 2 size 12{ sqrt {2} } {} .

1 2 size 12{ { {1} over { sqrt {2} } } } {} = 1 * 2 2 * 2 = 2 2 size 12{ { { sqrt {2} } over {2} } } {}

What about a more complicated case, such as 12 1 + 3 size 12{ { { sqrt {"12"} } over {1+ sqrt {3} } } } {} ? You might think we could simplify this by multiplying the top and bottom by ( 1 + 3 size 12{ sqrt {3} } {} ), but that doesn’t work: the bottom turns into ( 1 + 3 ) 2 = 1 + 2 3 size 12{ sqrt {3} } {} + 3 , which is at least as ugly as what we had before.

The correct trick for getting rid of ( 1 + 3 size 12{ sqrt {3} } {} ) is to multiply it by ( 1 3 size 12{ sqrt {3} } {} ). These two expressions, identical except for the replacement of a+ by a- , are known as conjugates . What happens when we multiply them? We don’t need to use FOIL if we remember that

( x + y ) ( x - y ) = x 2 - y 2

Using this formula, we see that

( 1 + 3 ) ( 1 - 3 ) = 1 2 - ( 3 ) 2 = 1 - 3 = - 2

So the square root does indeed go away. We can use this to simplify the original expression as follows.

Rationalizing using the conjugate of the denominator

12 1 + 3 size 12{ { { sqrt {"12"} } over {1+ sqrt {3} } } } {} = 12 ( 1 - 3 ) ( 1 + 3 ) ( 1 - 3 ) = 12 - 36 1 - 3 = 2 3 - 6 -2 = - 3 + 3

As always, you may want to check this on your calculator. Both the original and the simplified expression are approximately 1.268.

Of course, the process is the same when variables are involved.

Rationalizing with variables

1 x x size 12{ { {1} over {x - sqrt {x} } } } {} = 1 x + x x x x + x size 12{ { {1 left (x+ sqrt {x} right )} over { left (x - sqrt {x} right ) left (x+ sqrt {x} right )} } } {} = x + x x 2 x size 12{ { {x+ sqrt {x} } over {x rSup { size 8{2} } - x} } } {}

Once again, we multiplied the top and the bottom by the conjugate of the denominator : that is, we replaced a- with a+ . The formula ( x + a ) ( x - a ) = x 2 - a 2 enabled us to quickly multiply the terms on the bottom, and eliminated the square roots in the denominator.

Questions & Answers

how can chip be made from sand
Eke Reply
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Radicals. OpenStax CNX. Mar 03, 2011 Download for free at http://cnx.org/content/col11280/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Radicals' conversation and receive update notifications?

Ask