Page 1 / 1
This module covers techniques for the simplification of radicals.

The property $\sqrt{\text{ab}}$ = $\sqrt{a}$ $\sqrt{b}$ can be used to simplify radicals. The key is to break the number inside the root into two factors, one of which is a perfect square .

 $\sqrt{\text{75}}$ $=$ $\sqrt{25•3}$ because 25•3 is 75, and 25 is a perfect square $=$ $\sqrt{25}$ $\sqrt{3}$ because $\sqrt{\text{ab}}$ $=$ $\sqrt{a}$ $\sqrt{b}$ $=5$ $\sqrt{3}$ because $\sqrt{25}$ =5

So we conclude that $\sqrt{\text{75}}$ =5 $\sqrt{3}$ . You can confirm this on your calculator (both are approximately 8.66).

We rewrote 75 as $25•3$ because 25 is a perfect square. We could, of course, also rewrite 75 as $5•15$ , but—although correct—that would not help us simplify, because neither number is a perfect square.

## Simplifying a radical in two steps

 $\sqrt{180}$ $=$ $\sqrt{9•20}$ because $9•20$ is 180, and 9 is a perfect square $=$ $\sqrt{9}$ $\sqrt{20}$ because $\sqrt{\text{ab}}$ $=$ $\sqrt{a}$ $\sqrt{b}$ $=3$ $\sqrt{20}$ So far, so good. But wait! We’re not done! $=3$ $\sqrt{4•5}$ There’s another perfect square to pull out! $=3$ $\sqrt{4}$ $\sqrt{5}$ $=3\left(2\right)$ $\sqrt{5}$ $=6$ $\sqrt{5}$ Now we’re done.

The moral of this second example is that after you simplify, you should always look to see if you can simplify again .

A secondary moral is, try to pull out the biggest perfect square you can. We could have jumped straight to the answer if we had begun by rewriting 180 as $36•5$ .

This sort of simplification can sometimes allow you to combine radical terms, as in this example:

 $\sqrt{\text{75}}$ $–$ $\sqrt{\text{12}}$ $=5$ $\sqrt{3}$ $–2$ $\sqrt{3}$ We found earlier that $\sqrt{\text{75}}$ $=5$ $\sqrt{3}$ . Use the same method to confirm that $\sqrt{\text{12}}$ $=2$ $\sqrt{3}$ . $=3$ $\sqrt{3}$ 5 of anything minus 2 of that same thing is 3 of it, right?

That last step may take a bit of thought. It can only be used when the radical is the same. Hence, $\sqrt{2}$ + $\sqrt{3}$ cannot be simplified at all. We were able to simplify $\sqrt{\text{75}}$ $\sqrt{\text{12}}$ only by making the radical in both cases the same .

So why does $5$ $\sqrt{3}$ $–2$ $\sqrt{3}$ $=3$ $\sqrt{3}$ ? It may be simplest to think about verbally: 5 of these things, minus 2 of the same things, is 3 of them. But you can look at it more formally as a factoring problem, if you see a common factor of $\sqrt{3}$ .

$5$ $\sqrt{3}$ $–2$ $\sqrt{3}$ $=$ $\sqrt{3}$ $\left(5–2\right)=$ $\sqrt{3}$ $\left(3\right)$ .

Of course, the process is exactly the same if variable are involved instead of just numbers!

 ${x}^{\frac{3}{2}}+{x}^{\frac{5}{2}}$ $={x}^{3}+{x}^{5}$ Remember the definition of fractional exponents! $=\sqrt{{x}^{2}*x}+\sqrt{{x}^{4}*x}$ As always, we simplify radicals by factoring them inside the root... $\sqrt{{x}^{2}}*\sqrt{x}+\sqrt{{x}^{4}}*\sqrt{x}$ and then breaking them up... $=x\sqrt{x}+{x}^{2}\sqrt{x}$ and then taking square roots outside! $=\left({x}^{2}+x\right)\sqrt{x}$ Now that the radical is the same, we can combine.

## Rationalizing the denominator

It is always possible to express a fraction with no square roots in the denominator.

Is it always desirable? Some texts are religious about this point: “You should never have a square root in the denominator.” I have absolutely no idea why. To me, $\frac{1}{\sqrt{2}}$ looks simpler than $\frac{\sqrt{2}}{2}$ ; I see no overwhelming reason for forbidding the first or preferring the second.

However, there are times when it is useful to remove the radicals from the denominator: for instance, when adding fractions. The trick for doing this is based on the basic rule of fractions: if you multiply the top and bottom of a fraction by the same number, the fraction is unchanged. This rule enables us to say, for instance, that $\frac{2}{3}$ is exactly the same number as $\frac{2\cdot 3}{3\cdot 3}$ = $\frac{6}{9}$ .

In a case like $\frac{1}{\sqrt{2}}$ , therefore, you can multiply the top and bottom by $\sqrt{2}$ .

$\frac{1}{\sqrt{2}}$ = $\frac{1*2}{\sqrt{2}*\sqrt{2}}$ = $\frac{\sqrt{2}}{2}$

What about a more complicated case, such as $\frac{\sqrt{\text{12}}}{1+\sqrt{3}}$ ? You might think we could simplify this by multiplying the top and bottom by $\left(1+$ $\sqrt{3}$ ), but that doesn’t work: the bottom turns into ${\left(1+3\right)}^{2}$ $=1+2$ $\sqrt{3}$ $+3$ , which is at least as ugly as what we had before.

The correct trick for getting rid of $\left(1+$ $\sqrt{3}$ ) is to multiply it by $\left(1–$ $\sqrt{3}$ ). These two expressions, identical except for the replacement of $\mathrm{a+}$ by $\mathrm{a-}$ , are known as conjugates . What happens when we multiply them? We don’t need to use FOIL if we remember that

$\left(x+y\right)\left(x-y\right)={x}^{2}-{y}^{2}$

Using this formula, we see that

$\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)={1}^{2}-{\left(\sqrt{3}\right)}^{2}=1-3=-2$

So the square root does indeed go away. We can use this to simplify the original expression as follows.

## Rationalizing using the conjugate of the denominator

$\frac{\sqrt{\text{12}}}{1+\sqrt{3}}=\frac{\sqrt{12}\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}=\frac{\sqrt{12}-\sqrt{36}}{1-3}=\frac{2\sqrt{3}-6}{-2}=-\sqrt{3}+3$

As always, you may want to check this on your calculator. Both the original and the simplified expression are approximately 1.268.

Of course, the process is the same when variables are involved.

## Rationalizing with variables

$\frac{1}{x-\sqrt{x}}$ = $\frac{1\left(x+\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}$ = $\frac{x+\sqrt{x}}{{x}^{2}-x}$

Once again, we multiplied the top and the bottom by the conjugate of the denominator : that is, we replaced $\mathrm{a-}$ with $\mathrm{a+}$ . The formula $\left(x+a\right)\left(x-a\right)={x}^{2}-{a}^{2}$ enabled us to quickly multiply the terms on the bottom, and eliminated the square roots in the denominator.

how can chip be made from sand
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Got questions? Join the online conversation and get instant answers!

#### Get Jobilize Job Search Mobile App in your pocket Now! By Robert Murphy By Mariah Hauptman By Brooke Delaney By OpenStax By IES Portal By Mary Matera By OpenStax By Stephen Voron By Madison Christian By Keyaira Braxton