# 0.2 Implementation of the kalman filter

 Page 1 / 1
Explanation of the Kalman Filter implementation for digital rocket apogee detection.

Kalman Filter

The Kalman filter is a time domain method of incorporating knowledge of the physical model of the system and of the reliability of the sensors to accurately estimate the state of the system. Implementation of the Kalman filter first requires the creation of an accurate physical model of the system. The two equations which are used to determine the estimate of the current state from that of the previous state are:

${x}_{k}={\mathrm{Ax}}_{k-1}$
${x}_{k}={x}_{k}+K(m-H{x}_{k})$
$x=\left(\begin{array}{c}s\\ v\\ a\end{array}\right)$

Near apogee, the physical equations governing the rocket’s flight are simple, which makes A simple. The only force acting on the rocket is gravity only (because drag forces vary with the square of the velocity they can be neglected near apogee, where the velocity is close to zero).

$s=vt+\frac{1}{2}at^{2}$
$v=at$
$a=-g$
$\begin{pmatrix}1 & \mathrm{\Delta t} & \frac{\mathrm{\Delta t}^{2}}{2}\\ 0 & 1 & \mathrm{\Delta t}\\ 0 & 0 & 1\\ \end{pmatrix}$

Where ∆t is the time between x k and x k+1 .

m is a vector of the measured values from the sensors. Position is measured with the barometer and acceleration by the accelerometer.

$\begin{pmatrix}{s}_{m}\\ {a}_{m}\\ \end{pmatrix}$

H is a matrix which maps x k to m:

$\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & 1\\ \end{pmatrix}$

Finally, K , the Kalman gain matrix, weights the difference between the measured values and the estimated values. K is typically computed in real time as the system changes. However, the formula for K is rather complicated and therefore difficult to implement on a microcontroller in real time. Luckily, because the rocket’s flight can be approximated over the whole flight by the system and because the sensor variances do not change, K can be precomputed via the following recursive process:

$K=PH^{T}(HPH^{T}+R)^{-1}$
$P=(I-KP)P$
$P=APA^{T}+Q$

In a small number of repetitions, K will converge. In these equations, R is the measurement noise covariance matrix which holds the variances for each sensor:

$\begin{pmatrix}{\sigma }_{p}^{2} & 0\\ 0 & {\sigma }_{a}^{2}\\ \end{pmatrix}$

P is called the error covariance matrix, and it is first approximated with a guess, and then recursively defined like the K matrix. Finally, Q is the process noise covariance matrix, and is associated with the amount of noise added to the estimate in each time step. The code for calculating the K matrix is shown below:

.% Calculates the Kalman gain H = [1 0 0; 0 0 1]; % maps x (state variables) to z (sensor data) R = [35.8229 0; 0 .0012]; % measurement noise covariance Q = [0 0 0; 0 0 0; 0 0 1]; % process noise covariance matrix T = .05; % time stepA = [1 T 1/2 * T^2; 0 1 T; 0 0 1]; % maps previous state to next state% these three equations recursively define k (matrix of kalman gains) % and P (error covariance matrix)P = eye(3); % initial guess for p for i = 1:20K = P*H'/(H*P*H' + R); % Kalman gainsP = (eye(3) - K *H)*P; P = A*P*A' + Q;end display(K)display(H) display(P)

The last piece of code demonstrates the actual implementation of the Kalman filter in Matlab.

.% implements Kalman filter on altitude and accelerometer data. Required vectors are alt and accel, which are vectors cointaining the altitude and accelerometer data at times corresponding to the time vector t. t = .05:.05:15;estimate = zeros(3,length(t)); estimate(:,1) = [alt(1); 0; accel(1)]; for i = 2:length(t)estimate(:,i) = A*estimate(:,i-1); estimate(:,i) = estimate(:,i) + K*([alt(i);accel(i)]- H *estimate(:,i));end

are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
what is hormones?
Wellington
Got questions? Join the online conversation and get instant answers!