<< Chapter < Page Chapter >> Page >

C R = G 1 + GH size 12{ { {C} over {R} } = { {G} over {1+ ital "GH"} } } {}

Và ở phần trên, ta cũng có thể dùng đồ đồ hình truyền tín hiệu để ít tốn thì giờ hơn. Và ở đây, ta lại có thể dùng công thức Mason, như là công thức tính độ lợi tổng quát cho bất kỳ một đồ hình truyền tín hiệu nào.

T = i p i Δ i Δ size 12{T= { { Sum cSub { size 8{i} } {p rSub { size 8{i} } Δ rSub { size 8{i} } } } over {Δ} } } {} (3.19) Độ lợi : yout/yin ; yout: biến ra, yin: biến vào.

pi : độ lợi đường trực tiếp thứ i.

Δ = 1 j p j1 + j p j2 j p j3 + . . . . size 12{Δ=1 - Sum cSub { size 8{j} } {p rSub { size 8{j1} } +{}} Sum cSub { size 8{j} } {p rSub { size 8{j2} } - Sum cSub { size 8{j} } {p rSub { size 8{j3} } +{}} "." "." "." "." } } {}

=1-( tổng các độ lợi vòng)+(tổng các tích độ lợi 2 vòng không chạm) - (tổng các tích độ lợi của 3 vòng không chạm)+..

I = trị của  tính với các vòng không chạm với các đường trực tiếp thứ i.

( Hai vòng, hai đường hoặc 1 vòng và 1 đường gọi là không chạm (non_touching) nếu chúng không có nút chung).

Thí dụ : xem lại ĐHTTH của 1 hệ điều khiển dạnh chính tắc ở H.3_11.

Chỉ có một đường trực tiếp giữa R(s) và C(s). Vậy :

P1=G(s)

P2=P3=...=0.

- Chè cọ 1 voìng . Váûy:

P11=  G(s).H(s)

Pjk=0; j1, k1.

Váûy, =1-P11=1 G(s).H(s),

Vaì, 1=1-0=1

Cuối cùng,

T = C ( s ) R ( s ) = p 1 Δ 1 Δ = G ( s ) 1 ± G ( s ) H ( s ) size 12{T= { {C \( s \) } over {R \( s \) } } = { {p rSub { size 8{1} } Δ rSub { size 8{1} } } over {Δ} } = { {G \( s \) } over {1 +- G \( s \) H \( s \) } } } {} (3.20)

Rõ ràng, ta đã tìm lại được phương trình (3.16).

Thí dụ : Xem lại mạch điện ở VD3.2, mà ĐHTTH của nó vẽ ở hình H.3_13. Dùng công thức mason để tính độ lợi điện thế T= v3/v1.

1/R1 R3 1/R2 R4 1v1 i1 v2 i2 v3 v3(vòng 1)(vòng 2) (vòng 3)-1/R1 -R3-1/R2

H.3_14.

- Chỉ có một đường trực tiếp. Độ lợi đường trực tiếp:

p 1 = R 3 R 4 R 1 R 2 size 12{p rSub { size 8{1} } = { {R rSub { size 8{3} } R rSub { size 8{4} } } over {R rSub { size 8{1} } R rSub { size 8{2} } } } } {}

- Chỉ có 3 vòng hồi tiếp. Các độ lợi vòng:

p 11 = R 3 R 1 size 12{p rSub { size 8{"11"} } = - { {R rSub { size 8{3} } } over {R rSub { size 8{1} } } } } {} ; p 21 = R 3 R 2 size 12{p rSub { size 8{"21"} } = - { {R rSub { size 8{3} } } over {R rSub { size 8{2} } } } } {} ; p 31 = R 4 R 2 size 12{p rSub { size 8{"31"} } = - { {R rSub { size 8{4} } } over {R rSub { size 8{2} } } } } {} .

- Có hai vòng không chạm nhau (vòng 1 và vòng 3). Vậy:

P12 = tích độ lợi của 2 vòng không chạm nhau:

p 12 = p 11 p 31 = R 3 R 4 R 1 R 2 size 12{p rSub { size 8{"12"} } =p rSub { size 8{"11"} } p rSub { size 8{"31"} } = { {R rSub { size 8{3} } R rSub { size 8{4} } } over {R rSub { size 8{1} } R rSub { size 8{2} } } } } {}

-Không có 3 vòng nào không chạm nhau. Do đó:

=1- ( P11+ P21+ P31)+ P12

= 1 + R 3 R 1 + R 3 R 2 + R 4 R 2 + R 3 R 4 R 1 R 2 = R 1 R 2 + R 1 R 3 + R 1 R 4 + R 2 R 3 + R 3 R 4 R 1 R 2 size 12{1+ { {R rSub { size 8{3} } } over {R rSub { size 8{1} } } } + { {R rSub { size 8{3} } } over {R rSub { size 8{2} } } } + { {R rSub { size 8{4} } } over {R rSub { size 8{2} } } } + { {R rSub { size 8{3} } R rSub { size 8{4} } } over {R rSub { size 8{1} } R rSub { size 8{2} } } } = { {R rSub { size 8{1} } R rSub { size 8{2} } +R rSub { size 8{1} } R rSub { size 8{3} } +R rSub { size 8{1} } R rSub { size 8{4} } +R rSub { size 8{2} } R rSub { size 8{3} } +R rSub { size 8{3} } R rSub { size 8{4} } } over {R rSub { size 8{1} } R rSub { size 8{2} } } } } {}

Vì tất cả các vòng đều chạm các đường trực tiếp ( duy nhất), nên:

1 =1- 0 =1

Cuối cùng v 3 v 1 = R 3 R 4 R 1 R 2 + R 1 R 3 + R 1 R 4 + R 2 R 3 + R 3 R 4 size 12{ { {v rSub { size 8{3} } } over {v rSub { size 8{1} } } } = { {R rSub { size 8{3} } R rSub { size 8{4} } } over {R rSub { size 8{1} } R rSub { size 8{2} } +R rSub { size 8{1} } R rSub { size 8{3} } +R rSub { size 8{1} } R rSub { size 8{4} } +R rSub { size 8{2} } R rSub { size 8{3} } +R rSub { size 8{3} } R rSub { size 8{4} } } } } {} (3.21)

VII. ÁP DỤNG CÔNG THỨC MASON VÀO SƠ ĐỒ KHỐI.

Do sự tương tự giữa Sơ đồ khối và ĐHTTH, công thức độ lợi tổng quát có thể được dùng để xác định sự liên hệ vào ra của chúng. Một cách tổng quát, từ sơ đồ khối của 1 hệ tuyến tính đã cho, ta có thể áp dụng công thức độ lợi tổng quát MASON trực tiếp vào đó. Tuy nhiên, để có thể nhận dạng tất cả các vòng và các phần không chạm một cách rõ ràng, đôi khi cần đến sự giúp đỡ của ĐHTTH. Vậy cần vẽ ĐHTTH cho sơ đồ khối trước khi áp dụng công thức.

Nếu G(s) và H(s) là một thành phần của dạng chính tắc, thì từ công thức Mason ta suy ra:

Hàm chuyển đường trực tiếp G(s)= i p i Δ i size 12{ Sum cSub { size 8{i} } {p rSub { size 8{i} } Δ rSub { size 8{i} } } } {} (3.22)

Hàm chuyển đường vòng G(s).H(s) =  - 1 (3.23)

G2G3G4G1H1H2C++++-+R Thí dụ: Xác định tỉ số điều khiển C/R và dạng chính tắc của một hệ điều kiểm ở thí dụ 2.1.

Hình 3_15:

ĐHTTH là :

1 y2 y3 y4 G3 y2 y3 y4 G1 G4 y2 y3 y4 R y2 y3 y4 G2 y2 y3 y41 y2 y3 y4-H2 a25 y2 y3 y4 C y2 y3 y4

H.3_16.

- Có 2 đường trực tiếp :

P1 = G1.G2.G4

P2 = G1.G3.G4

- Cọ 3 voìng häưi tiãúp :

P11 = G1.G4.H1

P21 = - G1.G4.G2.H2

P31 = - G1.G3.G4.H2

 = 1 - ( G1.G4.H1 - G1.G2.H4.H2 - G1.G3.G4.H2)

Không có vòng không chạm nhau, và tất cả các vòng đều chạm với các đường trực tiếp. Vậy :

1 = 1 ; 2 = 1

Do đó tỷ số điều khiển là:

T = C R = P 1 Δ 1 + P 2 Δ 2 Δ T = G 1 G 4 ( G 2 + G 3 ) 1 G 1 G 4 H 1 + G 1 G 2 G 4 H 2 + G 1 G 3 G 4 H 2 alignl { stack { size 12{T= { {C} over {R} } = { {P rSub { size 8{1} } Δ rSub { size 8{1} } +P rSub { size 8{2} } Δ rSub { size 8{2} } } over {Δ} } } {} #T= { {G rSub { size 8{1} } G rSub { size 8{4} } \( G rSub { size 8{2} } +G rSub { size 8{3} } \) } over {1 - G rSub { size 8{1} } G rSub { size 8{4} } H rSub { size 8{1} } +G rSub { size 8{1} } G rSub { size 8{2} } G rSub { size 8{4} } H rSub { size 8{2} } +G rSub { size 8{1} } G rSub { size 8{3} } G rSub { size 8{4} } H rSub { size 8{2} } } } {} } } {} (3.24)

Từ phương trình (3.23) và (3.24), ta có:

G=G1G4(G2+G3)

Questions & Answers

what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Cơ sở tự động học. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10756/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Cơ sở tự động học' conversation and receive update notifications?

Ask