# 0.2 Exponentials

 Page 1 / 2

## Introduction

In this chapter, you will learn about the short cuts to writing $2×2×2×2$ . This is known as writing a number in exponential notation .

## Definition

Exponential notation is a short way of writing the same number multiplied by itself many times. For example, instead of $5×5×5$ , we write ${5}^{3}$ to show that the number 5 is multiplied by itself 3 times and we say “5 to the power of 3”. Likewise ${5}^{2}$ is $5×5$ and ${3}^{5}$ is $3×3×3×3×3$ . We will now have a closer look at writing numbers using exponential notation.

Exponential Notation

Exponential notation means a number written like

${a}^{n}$

where $n$ is an integer and $a$ can be any real number. $a$ is called the base and $n$ is called the exponent or index .

The $n$ th power of $a$ is defined as:

${a}^{n}=a×a×\cdots ×a\phantom{\rule{2.em}{0ex}}\left(\mathrm{n times}\right)$

with $a$ multiplied by itself $n$ times.

We can also define what it means if we have a negative exponent $-n$ . Then,

${a}^{-n}=\frac{1}{a×a×\cdots ×a\phantom{\rule{2.em}{0ex}}\left(n\mathrm{times}\right)}$
Exponentials

If $n$ is an even integer, then ${a}^{n}$ will always be positive for any non-zero real number $a$ . For example, although $-2$ is negative, ${\left(-2\right)}^{2}=-2×-2=4$ is positive and so is ${\left(-2\right)}^{-2}=\frac{1}{-2×-2}=\frac{1}{4}$ .

## Laws of exponents

There are several laws we can use to make working with exponential numbers easier. Some of these laws might have been seen in earlier grades, but we will list all the laws here for easy reference and explain each law in detail, so that you can understand them and not only remember them.

$\begin{array}{ccc}\hfill {a}^{0}& =& 1\hfill \\ \hfill {a}^{m}×{a}^{n}& =& {a}^{m+n}\hfill \\ \hfill {a}^{-n}& =& \frac{1}{{a}^{n}}\hfill \\ \hfill {a}^{m}÷{a}^{n}& =& {a}^{m-n}\hfill \\ \hfill {\left(ab\right)}^{n}& =& {a}^{n}{b}^{n}\hfill \\ \hfill {\left({a}^{m}\right)}^{n}& =& {a}^{mn}\hfill \end{array}$

## Exponential law 1: ${a}^{0}=1$

Our definition of exponential notation shows that

$\begin{array}{ccc}\hfill {a}^{0}& =& 1\phantom{\rule{1.em}{0ex}},\phantom{\rule{1.em}{0ex}}\left(a\ne 0\right)\hfill \end{array}$

For example, ${x}^{0}=1$ and ${\left(1\phantom{\rule{0.277778em}{0ex}}000\phantom{\rule{0.277778em}{0ex}}000\right)}^{0}=1$ .

## Application using exponential law 1: ${a}^{0}=1,\left(a\ne 0\right)$

1. ${16}^{0}$
2. $16{a}^{0}$
3. ${\left(16+a\right)}^{0}$
4. ${\left(-16\right)}^{0}$
5. $-{16}^{0}$

## Exponential law 2: ${a}^{m}×{a}^{n}={a}^{m+n}$

Our definition of exponential notation shows that

$\begin{array}{ccc}\hfill {a}^{m}×{a}^{n}& =& 1×a×...×a\phantom{\rule{2.em}{0ex}}\left(m\mathrm{times}\right)\hfill \\ \hfill & & \phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}×1×a×...×a\phantom{\rule{2.em}{0ex}}\left(n\mathrm{times}\right)\hfill \\ \hfill & =& 1×a×...×a\phantom{\rule{2.em}{0ex}}\left(m+n\mathrm{times}\right)\hfill \\ \hfill & =& {a}^{m+n}\hfill \end{array}$

For example,

$\begin{array}{ccc}\hfill {2}^{7}×{2}^{3}& =& \left(2×2×2×2×2×2×2\right)×\left(2×2×2\right)\hfill \\ & =& {2}^{7+3}\hfill \\ & =& {2}^{10}\hfill \end{array}$

## Interesting fact

This simple law is the reason why exponentials were originally invented. In the days before calculators, all multiplication had to be done by hand with a pencil and a pad of paper. Multiplication takes a very long time to do and is very tedious. Adding numbers however, is very easy and quick to do. If you look at what this law is saying you will realise that it means that adding the exponents of two exponential numbers (of the same base) is the same as multiplying the two numbers together. This meant that for certain numbers, there was no need to actually multiply the numbers together in order to find out what their multiple was. This saved mathematicians a lot of time, which they could use to do something more productive.

## Application using exponential law 2: ${a}^{m}×{a}^{n}={a}^{m+n}$

1. ${x}^{2}·{x}^{5}$
2. ${2}^{3}.{2}^{4}$ [Take note that the base (2) stays the same.]
3. $3×{3}^{2a}×{3}^{2}$

## Exponential law 3: ${a}^{-n}=\frac{1}{{a}^{n}},\phantom{\rule{1.em}{0ex}}a\ne 0$

Our definition of exponential notation for a negative exponent shows that

$\begin{array}{ccc}\hfill {a}^{-n}& =& 1÷a÷...÷a\phantom{\rule{2.em}{0ex}}\left(n\mathrm{times}\right)\hfill \\ \hfill & =& \frac{1}{1×a×\cdots ×a}\phantom{\rule{2.em}{0ex}}\left(n\mathrm{times}\right)\hfill \\ \hfill & =& \frac{1}{{a}^{n}}\hfill \end{array}$

This means that a minus sign in the exponent is just another way of showing that the whole exponential number is to be divided instead of multiplied.

#### Questions & Answers

Need help solving this problem (2/7)^-2
what is the coefficient of -4×
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years? Kala Reply lim x to infinity e^1-e^-1/log(1+x) given eccentricity and a point find the equiation Moses Reply 12, 17, 22.... 25th term Alexandra Reply 12, 17, 22.... 25th term Akash College algebra is really hard? Shirleen Reply Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table. Carole I'm 13 and I understand it great AJ I am 1 year old but I can do it! 1+1=2 proof very hard for me though. Atone hi Adu Not really they are just easy concepts which can be understood if you have great basics. I am 14 I understood them easily. Vedant find the 15th term of the geometric sequince whose first is 18 and last term of 387 Jerwin Reply I know this work salma The given of f(x=x-2. then what is the value of this f(3) 5f(x+1) virgelyn Reply hmm well what is the answer Abhi If f(x) = x-2 then, f(3) when 5f(x+1) 5((3-2)+1) 5(1+1) 5(2) 10 Augustine how do they get the third part x = (32)5/4 kinnecy Reply make 5/4 into a mixed number, make that a decimal, and then multiply 32 by the decimal 5/4 turns out to be AJ how Sheref can someone help me with some logarithmic and exponential equations. Jeffrey Reply sure. what is your question? ninjadapaul 20/(×-6^2) Salomon okay, so you have 6 raised to the power of 2. what is that part of your answer ninjadapaul I don't understand what the A with approx sign and the boxed x mean ninjadapaul it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared Salomon I'm not sure why it wrote it the other way Salomon I got X =-6 Salomon ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6 ninjadapaul oops. ignore that. ninjadapaul so you not have an equal sign anywhere in the original equation? ninjadapaul hmm Abhi is it a question of log Abhi 🤔. Abhi I rally confuse this number And equations too I need exactly help salma But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends salma Commplementary angles Idrissa Reply hello Sherica im all ears I need to learn Sherica right! what he said ⤴⤴⤴ Tamia hii Uday hi salma hi Ayuba Hello opoku hi Ali greetings from Iran Ali salut. from Algeria Bach hi Nharnhar what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks. Kevin Reply a perfect square v²+2v+_ Dearan Reply A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place. Kimberly Reply Jeannette has$5 and \$10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
What is the expressiin for seven less than four times the number of nickels
How do i figure this problem out.
how do you translate this in Algebraic Expressions
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Got questions? Join the online conversation and get instant answers!