0.2 Equations and inequalities: solving linear equations  (Page 2/2)

 Page 2 / 2

Method: solving equations

The general steps to solve equations are:

1. Expand (Remove) all brackets.
2. "Move" all terms with the variable to the left hand side of the equation, and all constant terms (the numbers) to the right hand side of the equals sign.Bearing in mind that the sign of the terms will change from ( $+$ ) to ( $-$ ) or vice versa, as they "cross over" the equals sign.
3. Group all like terms together and simplify as much as possible.
4. Factorise if necessary.
5. Find the solution.
6. Substitute solution into original equation to check answer.

Solve for $x$ : $4-x=4$

1. We are given $4-x=4$ and are required to solve for $x$ .

2. Since there are no brackets, we can start with grouping like terms and then simplifying.

3. $\begin{array}{ccc}\hfill 4-x& =& 4\hfill \\ \hfill -x& =& 4-4\phantom{\rule{1.em}{0ex}}\left(\mathrm{move}\mathrm{all}\mathrm{constant}\mathrm{terms}\left(\mathrm{numbers}\right)\mathrm{to}\mathrm{the}\mathrm{RHS}\left(\mathrm{right}\mathrm{hand}\mathrm{side}\right)\right)\hfill \\ \hfill -x& =& 0\phantom{\rule{1.em}{0ex}}\left(\mathrm{group}\mathrm{like}\mathrm{terms}\mathrm{together}\right)\hfill \\ \hfill -x& =& 0\phantom{\rule{1.em}{0ex}}\left(\mathrm{simplify}\mathrm{grouped}\mathrm{terms}\right)\hfill \\ \hfill -x& =& 0\hfill \\ \hfill \therefore \phantom{\rule{1.em}{0ex}}x& =& 0\hfill \end{array}$
4. Substitute solution into original equation:

$4-0=4$
$4=4$

Since both sides are equal, the answer is correct.

5. The solution of $4-x=4$ is $x=0$ .

Solve for $x$ : $4\left(2x-9\right)-4x=4-6x$

1. We are given $4\left(2x-9\right)-4x=4-6x$ and are required to solve for $x$ .

2. We start with expanding the brackets, then grouping like terms and then simplifying.

3. $\begin{array}{ccc}\hfill 4\left(2x-9\right)-4x& =& 4-6x\hfill \\ \hfill 8x-36-4x& =& 4-6x\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\left(\mathrm{expand}\mathrm{the}\mathrm{brackets}\right)\hfill \\ \hfill 8x-4x+6x& =& 4+36\phantom{\rule{1.em}{0ex}}\mathrm{move}\mathrm{all}\mathrm{terms}\mathrm{with}\mathrm{x}\mathrm{to}\mathrm{the}\mathrm{LHS}\hfill \\ \hfill \mathrm{and}\mathrm{all}\mathrm{constant}\mathrm{terms}\mathrm{to}\mathrm{the}\mathrm{RHS}\mathrm{of}\mathrm{the}=\\ \hfill \left(8x-4x+6x\right)& =& \left(4+36\right)\phantom{\rule{1.em}{0ex}}\left(\mathrm{group}\mathrm{like}\mathrm{terms}\mathrm{together}\right)\hfill \\ \hfill 10x& =& 40\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\left(\mathrm{simplify}\mathrm{grouped}\mathrm{terms}\right)\hfill \\ \hfill \frac{10}{10}x& =& \frac{40}{10}\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\left(\mathrm{divide}\mathrm{both}\mathrm{sides}\mathrm{by}10\right)\hfill \\ \hfill x& =& 4\hfill \end{array}$
4. Substitute solution into original equation:

$\begin{array}{ccc}\hfill 4\left(2\left(4\right)-9\right)-4\left(4\right)& =& 4-6\left(4\right)\hfill \\ \hfill 4\left(8-9\right)-16& =& 4-24\hfill \\ \hfill 4\left(-1\right)-16& =& -20\hfill \\ \hfill -4-16& =& -20\hfill \\ \hfill -20& =& -20\hfill \end{array}$

Since both sides are equal to $-20$ , the answer is correct.

5. The solution of $4\left(2x-9\right)-4x=4-6x$ is $x=4$ .

Solve for $x$ : $\frac{2-x}{3x+1}=2$

1. We are given $\frac{2-x}{3x+1}=2$ and are required to solve for $x$ .

2. Since there is a denominator of ( $3x+1$ ), we can start by multiplying both sides of the equation by ( $3x+1$ ). But because division by 0 is not permissible, there is a restriction on a value for x. ( $x\ne \frac{-1}{3}$ )

3. $\begin{array}{ccc}\hfill \frac{2-x}{3x+1}& =& 2\hfill \\ \hfill \left(2-x\right)& =& 2\left(3x+1\right)\hfill \\ \hfill 2-x& =& 6x+2\phantom{\rule{1.em}{0ex}}\left(\mathrm{remove}/\mathrm{expand}\mathrm{brackets}\right)\hfill \\ \hfill -x-6x& =& 2-2\phantom{\rule{1.em}{0ex}}\mathrm{move}\mathrm{all}\mathrm{terms}\mathrm{containing}\mathrm{x}\mathrm{to}\mathrm{the}\mathrm{LHS}\hfill \\ \hfill \mathrm{and}\mathrm{all}\mathrm{constant}\mathrm{terms}\left(\mathrm{numbers}\right)\mathrm{to}\mathrm{the}\mathrm{RHS}.\\ \hfill -7x& =& 0\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\left(\mathrm{simplify}\mathrm{grouped}\mathrm{terms}\right)\hfill \\ \hfill x& =& 0÷\left(-7\right)\hfill \\ \hfill therefore\phantom{\rule{1.em}{0ex}}x& =& 0\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\mathrm{zero}\mathrm{divided}\mathrm{by}\mathrm{any}\mathrm{number}\mathrm{is}0\hfill \end{array}$
4. Substitute solution into original equation:

$\begin{array}{ccc}\hfill \frac{2-\left(0\right)}{3\left(0\right)+1}& =& 2\hfill \\ \hfill \frac{2}{1}& =& 2\hfill \end{array}$

Since both sides are equal to 2, the answer is correct.

5. The solution of $\frac{2-x}{3x+1}=2$ is $x=0$ .

Solve for $x$ : $\frac{4}{3}x-6=7x+2$

1. We are given $\frac{4}{3}x-6=7x+2$ and are required to solve for $x$ .

2. We start with multiplying each of the terms in the equation by 3, then grouping like terms and then simplifying.

3. $\begin{array}{ccc}\hfill \frac{4}{3}x-6& =& 7x+2\hfill \\ \hfill 4x-18& =& 21x+6\phantom{\rule{1.em}{0ex}}\left(\mathrm{each}\mathrm{term}\mathrm{is}\mathrm{multiplied}\mathrm{by}3\right)\hfill \\ \hfill 4x-21x& =& 6+18\phantom{\rule{1.em}{0ex}}\left(\mathrm{move}\mathrm{all}\mathrm{terms}\mathrm{with}\mathrm{x}\mathrm{to}\mathrm{the}\mathrm{LHS}\hfill \\ \hfill \mathrm{and}\mathrm{all}\mathrm{constant}\mathrm{terms}\mathrm{to}\mathrm{the}\mathrm{RHS}\mathrm{of}\mathrm{the}=\right)\\ \hfill -17x& =& 24\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\left(\mathrm{simplify}\mathrm{grouped}\mathrm{terms}\right)\hfill \\ \hfill \frac{-17}{-17}x& =& \frac{24}{-17}\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}\left(\mathrm{divide}\mathrm{both}\mathrm{sides}\mathrm{by}-17\right)\hfill \\ \hfill x& =& \frac{-24}{17}\hfill \end{array}$
4. Substitute solution into original equation:

$\begin{array}{ccc}\hfill \frac{4}{3}×\frac{-24}{17}-6& =& 7×\frac{-24}{17}+2\hfill \\ \hfill \frac{4×\left(-8\right)}{\left(17\right)}-6& =& \frac{7×\left(-24\right)}{17}+2\hfill \\ \hfill \frac{\left(-32\right)}{17}-6& =& \frac{-168}{17}+2\hfill \\ \hfill \frac{-32-102}{17}& =& \frac{\left(-168\right)+34}{17}\hfill \\ \hfill \frac{-134}{17}& =& \frac{-134}{17}\hfill \end{array}$

Since both sides are equal to $\frac{-134}{17}$ , the answer is correct.

5. The solution of $\frac{4}{3}x-6=7x+2$ is,    $x=\frac{-24}{17}$ .

Solving linear equations

1. Solve for $y$ : $2y-3=7$
2. Solve for $w$ : $-3w=0$
3. Solve for $z$ : $4z=16$
4. Solve for $t$ : $12t+0=144$
5. Solve for $x$ : $7+5x=62$
6. Solve for $y$ : $55=5y+\frac{3}{4}$
7. Solve for $z$ : $5z=3z+45$
8. Solve for $a$ : $23a-12=6+2a$
9. Solve for $b$ : $12-6b+34b=2b-24-64$
10. Solve for $c$ : $6c+3c=4-5\left(2c-3\right)$
11. Solve for $p$ : $18-2p=p+9$
12. Solve for $q$ : $\frac{4}{q}=\frac{16}{24}$
13. Solve for $q$ : $\frac{4}{1}=\frac{q}{2}$
14. Solve for $r$ : $-\left(-16-r\right)=13r-1$
15. Solve for $d$ : $6d-2+2d=-2+4d+8$
16. Solve for $f$ : $3f-10=10$
17. Solve for $v$ : $3v+16=4v-10$
18. Solve for $k$ : $10k+5+0=-2k+-3k+80$
19. Solve for $j$ : $8\left(j-4\right)=5\left(j-4\right)$
20. Solve for $m$ : $6=6\left(m+7\right)+5m$

what is math number
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Need help solving this problem (2/7)^-2
x+2y-z=7
Sidiki
what is the coefficient of -4×
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years? Kala Reply lim x to infinity e^1-e^-1/log(1+x) given eccentricity and a point find the equiation Moses Reply 12, 17, 22.... 25th term Alexandra Reply 12, 17, 22.... 25th term Akash College algebra is really hard? Shirleen Reply Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table. Carole I'm 13 and I understand it great AJ I am 1 year old but I can do it! 1+1=2 proof very hard for me though. Atone hi Adu Not really they are just easy concepts which can be understood if you have great basics. I am 14 I understood them easily. Vedant find the 15th term of the geometric sequince whose first is 18 and last term of 387 Jerwin Reply I know this work salma The given of f(x=x-2. then what is the value of this f(3) 5f(x+1) virgelyn Reply hmm well what is the answer Abhi If f(x) = x-2 then, f(3) when 5f(x+1) 5((3-2)+1) 5(1+1) 5(2) 10 Augustine how do they get the third part x = (32)5/4 kinnecy Reply make 5/4 into a mixed number, make that a decimal, and then multiply 32 by the decimal 5/4 turns out to be AJ how Sheref can someone help me with some logarithmic and exponential equations. Jeffrey Reply sure. what is your question? ninjadapaul 20/(×-6^2) Salomon okay, so you have 6 raised to the power of 2. what is that part of your answer ninjadapaul I don't understand what the A with approx sign and the boxed x mean ninjadapaul it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared Salomon I'm not sure why it wrote it the other way Salomon I got X =-6 Salomon ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6 ninjadapaul oops. ignore that. ninjadapaul so you not have an equal sign anywhere in the original equation? ninjadapaul hmm Abhi is it a question of log Abhi 🤔. Abhi I rally confuse this number And equations too I need exactly help salma But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends salma Commplementary angles Idrissa Reply hello Sherica im all ears I need to learn Sherica right! what he said ⤴⤴⤴ Tamia hii Uday hi salma hi Ayuba Hello opoku hi Ali greetings from Iran Ali salut. from Algeria Bach hi Nharnhar A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place. Kimberly Reply Jeannette has$5 and \$10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
What is the expressiin for seven less than four times the number of nickels
How do i figure this problem out.
how do you translate this in Algebraic Expressions
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Got questions? Join the online conversation and get instant answers! By  By Jordon Humphreys   By  By By By