<< Chapter < Page Chapter >> Page >

Figure 3.4Integration paths for Wfld

W fld ( λ 0 , x 0 ) = path 2a dW fld + path 2b dW fld size 12{W rSub { size 8{"fld"} } \( λ rSub { size 8{0} } ,x rSub { size 8{0} } \) = Int cSub { size 8{"path 2a"} } { ital "dW" rSub { size 8{"fld"} } } + Int cSub { size 8{"path 2b"} } { ital "dW" rSub { size 8{"fld"} } } } {} (3.17)

On path 2a, = 0 size 12{dλ=0} {} and f fld = 0 size 12{f rSub { size 8{ ital "fld"} } =0} {} . Thus, dW fld = 0 size 12{ ital "dW" rSub { size 8{ ital "fld"} } =0} {} on path 2a.

On path 2b, dx  0 .

Therefore, (3.17) reduces to the integral of id λ size 12{ ital "id"λ} {} over path 2b.

W fld ( λ 0 , x 0 ) = 0 λ 0 i ( λ , x 0 ) size 12{W rSub { size 8{"fld"} } \( λ rSub { size 8{0} } ,x rSub { size 8{0} } \) = Int rSub { size 8{0} } rSup { size 8{λ rSub { size 6{0} } } } {i \( λ,x rSub { size 8{0} } \) } dλ} {} (3.18)

For a linear system in which λ size 12{λ} {} is proportional to i , (3.18) gives

W fld ( λ , x ) = 0 λ i ( λ ' , x ) d λ ' = 0 λ λ ' L ( x ) d λ ' = 1 2 λ 2 L ( x ) size 12{W rSub { size 8{"fld"} } \( λ,x \) = Int rSub { size 8{0} } rSup { size 8{λ} } {i \( { {λ}} sup { ' },x \) } d { {λ}} sup { ' }= Int rSub { size 8{0} } rSup { size 8{λ} } { { { { {λ}} sup { ' }} over {L \( x \) } } } d { {λ}} sup { ' }= { {1} over {2} } { {λ rSup { size 8{2} } } over {L \( x \) } } } {} (3.19)

  • V : the volume of the magnetic field

W fld = v ( 0 B H . d B ' ) dV size 12{W rSub { size 8{ ital "fld"} } = Int rSub { size 8{v} } { \( Int rSub { size 8{0} } rSup { size 8{B} } {H "." d { {B}} sup { ' }} \) } ital "dV"} {} (3.20)

If B = μH size 12{B=μH} {} ,

W fld = v ( B 2 ) dV size 12{W rSub { size 8{ ital "fld"} } = Int rSub { size 8{v} } { \( { {B rSup { size 8{2} } } over {2μ} } \) } ital "dV"} {} (3.21)

§3.4 Determination of Magnetic Force and Torque form Energy

  • The magnetic stored energy W fld size 12{W rSub { size 8{ ital "fld"} } } {} is a state function, determined uniquely by the values of the independent state variables λ size 12{λ} {} and x.

dW fld ( λ , x ) = id λ f fld dx size 12{ ital "dW" rSub { size 8{"fld"} } \( λ,x \) = ital "id"λ - f rSub { size 8{"fld"} } ital "dx"} {} (3.22)

dF ( x 1 , x 2 ) = F x 1 x 2 dx 1 + F x 2 x 1 dx 2 size 12{ ital "dF" \( x rSub { size 8{1} } ,x rSub { size 8{2} } \) = { { partial F} over { partial x rSub { size 8{1} } } } \rline rSub { size 8{x rSub { size 6{2} } } } ital "dx" rSub {1} size 12{+ { { partial F} over { partial x rSub {2} } } \rline rSub {x rSub { size 6{1} } } } size 12{ ital "dx" rSub {2} }} {} (3.23)

dW fld ( λ , x ) = W fld λ x + W fld x λ dx size 12{ ital "dW" rSub { size 8{"fld"} } \( λ,x \) = { { partial W rSub { size 8{"fld"} } } over { partial λ} } \rline rSub { size 8{x} } dλ+ { { partial W rSub { size 8{"fld"} } } over { partial x} } \rline rSub { size 8{λ} } ital "dx"} {} (3.24)

Comparing (3.22) with (3.24) gives (3.25) and (3.26):

i = W fld ( λ , x ) λ x size 12{i= { { partial W rSub { size 8{"fld"} } \( λ,x \) } over { partial λ} } \rline rSub { size 8{x} } } {} (3.25)

f fld = W fld ( λ , x ) x λ size 12{f rSub { size 8{ ital "fld"} } = - { { partial W rSub { size 8{ ital "fld"} } \( λ,x \) } over { partial x} } \rline rSub { size 8{λ} } } {} (3.26)

  • Once we know W fld size 12{W rSub { size 8{ ital "fld"} } } {} as a function of λ size 12{λ} {} and as a function of λ size 12{λ} {} and i( λ size 12{λ} {} , x) .
  • Equation (3.26) can be used to solve for the mechanical force f fld ( λ , x ) size 12{f rSub { size 8{ ital "fld"} } \( λ,x \) } {} .The partial derivative is taken while holding the flux linkages λ size 12{λ} {} constant.
  • For linear magnetic systems for which λ = L ( x ) i size 12{λ=L \( x \) i} {} , the force can be found as

f fld = x 1 2 λ 2 L ( x ) λ = λ 2 2L ( x ) 2 dL ( x ) dx size 12{f rSub { size 8{"fld"} } = - { { partial } over { partial x} } left ( { {1} over {2} } { {λ rSup { size 8{2} } } over {L \( x \) } } right ) \rline rSub { size 8{λ} } = { {λ rSup { size 8{2} } } over {2L \( x \) rSup { size 8{2} } } } { { ital "dL" \( x \) } over { ital "dx"} } } {} (3.27)

{} f fld = i 2 2 dL ( x ) dx size 12{f rSub { size 8{ ital "fld"} } = { {i rSup { size 8{2} } } over {2} } { { ital "dL" \( x \) } over { ital "dx"} } } {} (3.28)

  • For a system with a rotating mechanical terminal, the mechanical terminal variables become the angular displacement θ size 12{θ} {} and the torque T fld size 12{T rSub { size 8{ ital "fld"} } } {} .

dW fld ( λ , θ ) = id λ T fld size 12{ ital "dW" rSub { size 8{"fld"} } \( λ,θ \) = ital "id"λ - T rSub { size 8{"fld"} } dθ} {} (3.29)

T fld = W fld ( λ , θ ) θ λ size 12{T rSub { size 8{ ital "fld"} } = - { { partial W rSub { size 8{ ital "fld"} } \( λ,θ \) } over { partial θ} } \rline rSub { size 8{λ} } } {} (3.30)

  • For linear magnetic systems for which λ = L ( θ ) i size 12{λ=L \( θ \) i} {} :

W fld ( λ , θ ) = 1 2 λ 2 L ( θ ) size 12{W rSub { size 8{ ital "fld"} } \( λ,θ \) = { {1} over {2} } { {λ rSup { size 8{2} } } over {L \( θ \) } } } {} (3.31)

T fld = θ 1 2 λ 2 L ( θ ) λ = 1 2 λ 2 L ( θ ) 2 dL ( θ ) size 12{T rSub { size 8{"fld"} } = - { { partial } over { partial θ} } left ( { {1} over {2} } { {λ rSup { size 8{2} } } over {L \( θ \) } } right ) \rline rSub { size 8{λ} } = { {1} over {2} } { {λ rSup { size 8{2} } } over {L \( θ \) rSup { size 8{2} } } } { { ital "dL" \( θ \) } over {dθ} } } {} (3.32)

T fld = i 2 2 dL ( θ ) size 12{T rSub { size 8{ ital "fld"} } = { {i rSup { size 8{2} } } over {2} } { { ital "dL" \( θ \) } over {dθ} } } {} (3.33)

§3.5 Determination of Magnetic Force and Torque from Coenergy

  • Recall that in §3.4, the magnetic stored energy W fld size 12{W rSub { size 8{ ital "fld"} } } {} is a state function, determined uniquely by the values of the independent state variables λ size 12{λ} {} and x .

dW fld ( λ , x ) = id λ f fld dx size 12{ ital "dW" rSub { size 8{ ital "fld"} } \( λ,x \) = ital "id"λ - f rSub { size 8{ ital "fld"} } ital "dx"} {} (3.34)

dW fld ( λ , x ) = W fld λ x + W fld x λ dx size 12{ ital "dW" rSub { size 8{ ital "fld"} } \( λ,x \) = { { partial W rSub { size 8{ ital "fld"} } } over { partial λ} } \rline rSub { size 8{x} } dλ+ { { partial W rSub { size 8{ ital "fld"} } } over { partial x} } \rline rSub { size 8{λ} } ital "dx"} {} (3.35)

i = W fld ( λ , x ) λ x size 12{i= { { partial W rSub { size 8{ ital "fld"} } \( λ,x \) } over { partial λ} } \rline rSub { size 8{x} } } {} (3.36)

f fld = W fld ( λ , x ) x λ size 12{f rSub { size 8{ ital "fld"} } = { { partial W rSub { size 8{ ital "fld"} } \( λ,x \) } over { partial x} } \rline rSub { size 8{λ} } } {} (3.37)

  • Coenergy: from which the force can be obtained directly as a function of the current.The selection of energy or coenergy as the state function is purely a matter of convenience.
  • The coenergy W fld ' ( i , x ) size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,x \) } {} is defined as a function of i and x such that

W fld ' ( i , x ) = W fld ( λ , x ) size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,x \) =iλ - W rSub { size 8{ ital "fld"} } \( λ,x \) } {} (3.38)

d ( ) = id λ = λ di size 12{d \( iλ \) = ital "id"λ=λ ital "di"} {} (3.39)

d W fld ' ( i , x ) = d ( ) dW fld ( λ , x ) size 12{d { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,x \) =d \( iλ \) - ital "dW" rSub { size 8{ ital "fld"} } \( λ,x \) } {} (3.40)

d W fld ' ( i , x ) = λ di + f fld dx size 12{d { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,x \) =λ ital "di"+f rSub { size 8{ ital "fld"} } ital "dx"} {} (3.41)

  • From (3.37), the coenergy W fld ' ( i , x ) size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,x \) } {} can be seen to be a state function of the two independent variables i and x .

d W fld ' ( i , x ) = W fld ' i x di + W fld ' x i dx size 12{d { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,x \) = { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } } over { partial i} } \rline rSub { size 8{x} } ital "di"+ { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } } over { partial x} } \rline rSub { size 8{i} } ital "dx"} {} (3.42)

λ = W fld ' ( i , x ) i x size 12{λ= { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,x \) } over { partial i} } \rline rSub { size 8{x} } } {} (3.43)

f fld = W fld ' ( i , x ) x i size 12{f rSub { size 8{ ital "fld"} } = { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,x \) } over { partial x} } \rline rSub { size 8{i} } } {} (3.44)

  • For any given system, (3.26) and (3.40) will give the same result.
  • By analogy to (3.18) in §3.3, the coenergy can be found as (3.41)

W fld ( λ 0 , x 0 ) = 0 λ 0 i ( λ , x 0 ) size 12{W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{0} } ,x rSub { size 8{0} } \) = Int rSub { size 8{0} } rSup { size 8{λ rSub { size 6{0} } } } {i \( λ,x rSub { size 8{0} } \) } dλ} {} (3.42)

W fld ' ( i , x ) = λ ( i ' , x ) d i ' size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,x \) = Int rSub {} rSup {} {λ \( { {i}} sup { ' },x \) } d { {i}} sup { ' }} {} (3.43)

For linear magnetic systems for which λ = L ( x ) i size 12{λ=L \( x \) i} {} ,

W fld ' ( i , x ) = 1 2 L ( x ) i 2 size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,x \) = { {1} over {2} } L \( x \) i rSup { size 8{2} } } {} (3.44)

f fld = i 2 2 dL ( x ) dx size 12{f rSub { size 8{ ital "fld"} } = { {i rSup { size 8{2} } } over {2} } { { ital "dL" \( x \) } over { ital "dx"} } } {} (3.45)

  • For a system with a rotating mechanical displacement,

W fld ' ( i , θ ) = 0 i λ ( i ' , θ ) d i ' size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,θ \) = Int rSub { size 8{0} } rSup { size 8{i} } {λ \( { {i}} sup { ' },θ \) } d { {i}} sup { ' }} {} (3.46)

T fld = W fld ' ( i , θ ) θ i size 12{T rSub { size 8{ ital "fld"} } = { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,θ \) } over { partial θ} } \rline rSub { size 8{i} } } {} (3.47)

If the system is magnetically linear,

W fld ' ( i , θ ) = 1 2 L ( θ ) i 2 size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,θ \) = { {1} over {2} } L \( θ \) i rSup { size 8{2} } } {} (3.48)

T fld = i 2 2 dL ( θ ) size 12{T rSub { size 8{ ital "fld"} } = { {i rSup { size 8{2} } } over {2} } { { ital "dL" \( θ \) } over {dθ} } } {} (3.49)

(3.47) is identical to the expression given by (3.33).

  • In field-theory terms, for soft magnetic materials

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Intergrated library system management. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10801/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Intergrated library system management' conversation and receive update notifications?

Ask