<< Chapter < Page Chapter >> Page >

For the game in [link] , determine the optimal strategy for both Robert and Carol, and find the value of the game.

Since we have already determined that the game is non-strictly determined, we proceed to determine the optimal strategy for the game. We rewrite the game matrix.

G = 10 10 25 25 size 12{G= left [ matrix { "10" {} # - "10" {} ##- "25" {} # "25"{} } right ]} {}

Let R = r 1 r size 12{R= left [ matrix { r {} # 1 - r{}} right ]} {} be Robert's strategy, and C = c 1 c size 12{C= left [ matrix { c {} ##1 - c } right ]} {} be Carol's strategy.

To find the optimal strategy for Robert, we, first, find the product RG size 12{ ital "RG"} {} as below.

r 1 r 10 10 25 25 = 35 r 25 35 r + 25 size 12{ left [ matrix { r {} # 1 - r{}} right ] left [ matrix {"10" {} # - "10" {} ## - "25" {} # "25"{}} right ]= left [ matrix {"35"r - "25" {} # - "35"r+"25"{} } right ]} {}

By setting the entries equal, we get

35 r 25 = 35 r + 25 size 12{"35"r - "25"= - "35"r+"25"} {}
or r = 5 / 7 size 12{r=5/7} {} .

Therefore, the optimal strategy for Robert is 5 / 7 2 / 7 size 12{ left [ matrix { 5/7 {} # 2/7{}} right ]} {} .

To find the optimal strategy for Carol, we, first, find the following product.

10 10 25 25 c 1 c = 20 c 10 50 c + 25 size 12{ left [ matrix { "10" {} # - "10" {} ##- "25" {} # "25"{} } right ]left [ matrix { c {} ##1 - c } right ]= left [ matrix { "20"c - "10" {} ##- "50"c+"25" } right ]} {}

We now set the entries equal to each other, and we get,

20 c 10 = 50 c + 25 size 12{"20"c - "10"= - "50"c+"25"} {}

or c = 1 / 2 size 12{c=1/2} {}

Therefore, the optimal strategy for Carol is 1 / 2 1 / 2 size 12{ left [ matrix { 1/2 {} ##1/2 } right ]} {} .

To find the expected value, V size 12{V} {} , of the game, we find the product RGC size 12{ ital "RGC"} {} .

V = 5 / 7 2 / 7 10 10 25 25 1 / 2 1 / 2 = 0 size 12{ matrix { V {} # ={} {} # left [ matrix {5/7 {} # 2/7{} } right ]left [ matrix { "10" {} # - "10" {} ##- "25" {} # "25"{} } right ]left [ matrix { 1/2 {} ##1/2 } right ]{} ## {} # ={} {} # left [0 right ]{} } } {}

If both players play their optimal strategy, the value of the game is zero. In such case, the game is called fair .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Reduction by dominance

Sometimes an m × n size 12{m times n} {} game matrix can be reduced to a 2 × 2 size 12{2 times 2} {} matrix by deleting certain rows and columns. A row can be deleted if there exists another row that will produce a payoff of an equal or better value. Similarly, a column can be deleted if there is another column that will produce a payoff of an equal or better value for the column player. The row or column that produces a better payoff for its corresponding player is said to dominate the row or column with the lesser payoff.

For the following game, determine the optimal strategy for both the row player and the column player, and find the value of the game.

G = 2 6 4 1 2 3 1 2 2 size 12{G= left [ matrix { - 2 {} # 6 {} # 4 {} ##- 1 {} # - 2 {} # - 3 {} ## 1 {} # 2 {} # - 2{}} right ]} {}

We first look for a saddle point and determine that none exist. Next, we try to reduce the matrix to a 2 × 2 size 12{2 times 2} {} matrix by eliminating the dominated row.

Since every entry in row 3 is larger than the corresponding entry in row 2, row 3 dominates row 2. Therefore, a rational row player will never play row 2, and we eliminate row 2. We get

2 6 4 1 2 2 size 12{ left [ matrix { - 2 {} # 6 {} # 4 {} ##1 {} # 2 {} # - 2{} } right ]} {}

Now we try to eliminate a column. Remember that the game matrix represents the payoffs for the row player and not the column player; therefore, the larger the number in the column, the smaller the payoff for the column player.

The column player will never play column 2, because it is dominated by both column 1 and column 3. Therefore, we eliminate column 2 and get the modified matrix, M size 12{M} {} , below.

M = 2 4 1 2 size 12{M= left [ matrix { - 2 {} # 4 {} ##1 {} # - 2{} } right ]} {}

To find the optimal strategy for both the row player and the column player, we use the method learned in the [link] .

Let the row player's strategy be R = r 1 r size 12{R= left [ matrix { r {} # 1 - r{}} right ]} {} , and the column player's be strategy be C = c 1 c size 12{C= left [ matrix { c {} ##1 - c } right ]} {} .

To find the optimal strategy for the row player, we, first, find the product RM size 12{ ital "RM"} {} as below.

r 1 r 2 4 1 2 = 3r + 1 6r 2 size 12{ left [ matrix { r {} # 1 - r{}} right ] left [ matrix {- 2 {} # 4 {} ## 1 {} # - 2{}} right ]= left [ matrix {- 3r+1 {} # 6r - 2{} } right ]} {}

By setting the entries equal, we get

3r + 1 = 6r 2 size 12{ - 3r+1=6r - 2} {}

or r = 1 / 3 size 12{r=1/3} {} .

Therefore, the optimal strategy for the row player is 1 / 3 2 / 3 size 12{ left [ matrix { 1/3 {} # 2/3{}} right ]} {} , but relative to the original game matrix it is 1 / 3 0 2 / 3 size 12{ left [ matrix { 1/3 {} # 0 {} # 2/3{}} right ]} {} .

To find the optimal strategy for the column player we, first, find the following product.

2 4 1 2 c 1 c = 6c + 4 3c 2 size 12{ left [ matrix { - 2 {} # 4 {} ##1 {} # - 2{} } right ]left [ matrix { c {} ##1 - c } right ]= left [ matrix { - 6c+4 {} ##3c - 2 } right ]} {}

We set the entries in the product matrix equal to each other, and we get,

6c + 4 = 3c 2 size 12{ - 6c+4=3c - 2} {}

or c = 2 / 3 size 12{c=2/3} {}

Therefore, the optimal strategy for the column player is 2 / 3 1 / 3 size 12{ left [ matrix { 2/3 {} ##1/3 } right ]} {} , but relative to the original game matrix, the strategy for the column player is 2 / 3 0 1 / 3 size 12{ left [ matrix { 2/3 {} ##0 {} ## 1/3} right ]} {} .

To find the expected value, V size 12{V} {} , of the game, we have two choices: either to find the product of matrices R size 12{R} {} , M size 12{M} {} and C size 12{C} {} , or multiply the optimal strategies relative to the original matrix to the original matrix. We choose the first, and get

V = 1 / 3 2 / 3 2 4 1 2 2 / 3 1 / 3 = 0 size 12{ matrix { V {} # ={} {} # left [ matrix {1/3 {} # 2/3{} } right ]left [ matrix { - 2 {} # 4 {} ##1 {} # - 2{} } right ]left [ matrix { 2/3 {} ##1/3 } right ]{} ## {} # ={} {} # left [0 right ]{} } } {}

Therefore, if both players play their optimal strategy, the value of the game is zero.

Got questions? Get instant answers now!

We summarize as follows:

Reduction by dominance

  1. Sometimes an m × n size 12{m times n} {} game matrix can be reduced to a 2 × 2 size 12{2 times 2} {} matrix by deleting dominated rows and columns.
  2. A row is called a dominated row if there exists another row that will produce a payoff of an equal or better value. That happens when there exists a row whose every entry is larger than the corresponding entry of the dominated row.
  3. A column is called a dominated column if there exists another column that will produce a payoff of an equal or better value. This happens when there exists a column whose every entry is smaller than the corresponding entry of the dominated row.

Questions & Answers

how can chip be made from sand
Eke Reply
is this allso about nanoscale material
Almas
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
If March sales will be up from February by 10%, 15%, and 20% at Place I, Place II, and Place III, respectively, find the expected number of hot dogs, and corn dogs to be sold
Logan Reply
8. It is known that 80% of the people wear seat belts, and 5% of the people quit smoking last year. If 4% of the people who wear seat belts quit smoking, are the events, wearing a seat belt and quitting smoking, independent?
William Reply
Mr. Shamir employs two part-time typists, Inna and Jim for his typing needs. Inna charges $10 an hour and can type 6 pages an hour, while Jim charges $12 an hour and can type 8 pages per hour. Each typist must be employed at least 8 hours per week to keep them on the payroll. If Mr. Shamir has at least 208 pages to be typed, how many hours per week should he employ each student to minimize his typing costs, and what will be the total cost?
Chine Reply
At De Anza College, 20% of the students take Finite Mathematics, 30% take Statistics and 10% take both. What percentage of the students take Finite Mathematics or Statistics?
Chalton Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied finite mathematics. OpenStax CNX. Jul 16, 2011 Download for free at http://cnx.org/content/col10613/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied finite mathematics' conversation and receive update notifications?

Ask