# 0.16 Nonlinear approximation and wavelet analysis  (Page 2/2)

 Page 2 / 2

Suppose $f$ is piecewise Lipschitz and ${f}_{k}$ ia a piecewise constant.

$|f\left(t\right)-{f}_{k}\left(t\right)|\approx \Delta$

where $\Delta$ is a constant equal to average of $f$ on right and left side of discontinuity in this interval.

$⇒||f-{f}_{k}{||}_{{L}_{2}}^{2}=O\left({k}^{-1}\right)$

where ${k}^{-1}$ is the width of the interval. Notice this rate is quite slow.

This problem naturally suggests the following remedy: use very small intervals near discontinuities and larger intervals insmooth regions. Specifically, suppose we use intervals of width ${k}^{-2\alpha }$ to contain the discontinuities and the intervals ofwidth ${k}^{-1}$ elsewhere. Then accordingly piecewise polynomial approximation ${\stackrel{˜}{f}}_{k}$ satisfies

$||f-{\stackrel{˜}{f}}_{k}{||}_{{L}_{2}}^{2}=O\left({k}^{-2\alpha }\right).$

We can accomplish this need for "adaptive resolution" or "multiresolution" using recursive partitions and trees.

## Recursive dyadic partitions

We discussed this idea already in our examination of classification trees. Here is the basic idea again, graphically. Complete and pruned RDP along with their correspnding tree structures.

Consider a function $f\in {B}^{\alpha }\left({C}_{\alpha }\right)$ that contains no more than m points of discontinuity, and is ${H}^{\alpha }\left({C}_{\alpha }\right)$ away from these points.

Lemma

Consider a complete RDP with n intervals, then there exists anassociated pruned RDP with $O\left(klogn\right)$ intervals, such that an associated piecewise degree $⌈\alpha ⌉$ polynomial approximation $\stackrel{˜}{\left(}{f\right)}_{k}$ , has a squared approximation error of $O\left(min\left({k}^{-2\alpha },{n}^{-1}\right)\right)$ .

Assume $n>k>m$ . Divide $\left[0,1\right]$ into $k$ intervals. If $f$ is smooth on a particular interval $I$ , then

$|f\left(t\right)-{\stackrel{˜}{f}}_{k}\left(t\right)|=O\left({k}^{-2\alpha }\right)\forall t\in I.$

In intervals that contain a discontinuity, recursively subdivide into two until the discontinuity is contained in an interval ofwidth ${n}^{-1}$ . This process results in at most $lo{g}_{2}n$ addition subintervals per discontinuity, and the squared approximationerror is $O\left(k-2\alpha \right)$ on all of them accept the $m$ intervals of width ${n}^{-1}$ containing the discontinuities where the error is $O\left(1\right)$ at each point.

Thus, the overall squared ${L}_{2}$ norm is

$||f-{\stackrel{˜}{f}}_{k}{||}_{{L}_{2}}^{2}=O\left(min\left({k}^{-2\alpha },{n}^{-1}\right)\right)$

and there are at most $k+lo{g}_{2}n$ intervals in the partition. Since k>m, we can upperbound the number of intervals by $2klo{g}_{2}n$ .

Note that if the initial complete RDP has $n\approx {k}^{2\alpha }$ intervals, then the squared error is $O\left({k}^{-2\alpha }\right)$ .

Thus, we only incur a factor of $2\alpha logk$ additional leafs and achieve the same overall approximation error as in the ${H}^{\alpha }\left({C}_{\alpha }\right)$ case. We will see that this is a small price to pay in order to handle not only smooth functions, but alsopiecewise smooth functions.

## Wavelet approximations

Let $f\in {L}^{2}\left(\left[0,1\right]\right)$ ; $\int {f}^{2}\left(t\right)dt<\infty$ .

A wavelet approximation is a series of the form

$f={c}_{o}+\sum _{j\ge 0}\sum _{k=1}^{{2}^{j}}{\psi }_{j,k}$

where ${c}_{o}$ is a constant $\left({c}_{o}={\int }_{0}^{1}f\left(t\right)dt\right)$ ,

$={\int }_{0}^{1}f\left(t\right){\psi }_{j,k}\left(t\right)dt$

and the basis functions ${\psi }_{j,k}$ are orthonormal, oscillatory signals, each with an associated scale ${2}^{-j}$ and position $k{2}^{-j}$ . ${\psi }_{j,k}$ is called the wavelet at scale ${2}^{-j}$ and position $k{2}^{-j}$ .

## Haar wavelets

${\psi }_{j,k}\left(t\right)={2}^{j/2}\left({\mathbf{1}}_{\left\{t\in \left[{2}^{-j}\left(k-1\right),{2}^{-j}\left(k-1/2\right)\right]\right\}}-{\mathbf{1}}_{\left\{t\in \left[{2}^{-j}\left(k-1/2\right),{2}^{-j}k\right]\right\}}\right)$ Haar Wavelet
${\int }_{0}^{1}{\psi }_{j,k}\left(t\right)dt=0$
${\int }_{0}^{1}{\psi }_{j,k}^{2}\left(t\right)dt={\int }_{\left(k-1\right){2}^{-j}}^{k{2}^{-j}}{2}^{j}dt=1$
${\int }_{0}^{1}{\psi }_{j,k}\left(t\right){\psi }_{l,m}\left(t\right)dt={\delta }_{j,l}.{\delta }_{k,m}$
If $f$ is constant on $\left[{2}^{-j}\left(k-1\right),{2}^{-j}k\right]$ , then
$\int f{\psi }_{j,k}\left(t\right)=0.$

Suppose $f$ is piecewise constant with at most $m$ discontinuities. Let

${f}_{J}={c}_{o}+\sum _{j=0}^{J-1}\sum _{k=1}^{{2}^{j}}{\psi }_{j,k}.$

Then, ${f}_{J}$ has at most $mJ$ non-zero wavelet coefficients; i.e., $=0$ for all but $mJ$ terms, since at most one Haar Wavelet at each scale senses each point of discontinuity. Said another way, allbut at most $m$ of the wavelets at each scale have support over constant regions of $f$ .

${f}_{J}$ itself will be piecewise constant with discontinuities only possible occurring at end points of the intervals $\left[{2}^{-J}\left(k-1\right),{2}^{-J}k\right]$ . Therefore, in this case

$||f-{f}_{J}{||}_{{L}_{2}}^{2}=O\left({2}^{-J}\right).$

Daubechies wavelets are the extension of the Haar wavelet idea. Haar wavelets have one "vanishing moment":

${\int }_{0}^{1}{\psi }_{j,k}=0.$

Daubechies wavelets are "smoother" basis functions with extra vanishing moments. The Daubechies- $N$ wavelet has $N$ vanishing moments.

${\int }_{0}^{1}{t}^{l}{\psi }_{j,k}dt=0forl=0,1,...,N-1.$

The Daubechies-1 wavelet is just the Haar case.

If $f$ is a piecewise degree $\le N$ polynomial with at most m pieces, then using the Daubechies- $N$ wavelet system.

$||f-{f}_{J}{||}_{{L}_{2}}^{2}=O\left({2}^{-J}\right);$

and

${f}_{J}\left(t\right)={c}_{o}+\sum _{j=0}^{J-1}\sum _{k=1}^{{2}^{j}}{\psi }_{j,k}\left(t\right)$

has at most $O\left(mJ\right)$ non-zero wavelet coefficients. ${f}_{J}$ is called the Discrete Wavelet Transform (DWT) approximation of $f$ . The key idea is the same as we saw with trees.

## Sampled data

We can also use DWT's to analyze and represent discrete, sampled functions. Suppose,

$\underline{f}=\left[f\left(1/n\right),f\left(2/n\right),...,f\left(n/n\right)\right]$

then we can write $\underline{f}$ as

$\underline{f}={c}_{o}+\sum _{j=0}^{lo{g}_{2}n-1}\sum _{k=1}^{{2}^{j}}<\underline{f},{\underline{\psi }}_{j,k}>{\underline{\psi }}_{j,k}$

where

${\underline{\psi }}_{j,k}=\left[{\psi }_{j,k}\left(1\right),{\psi }_{j,k}\left(2\right),...,{\psi }_{j,k}\left(n\right)\right]$

is a discrete time analog of the continuous time wavelets we considered before. In particular,

$\sum _{i=1}^{n}{i}^{l}{\psi }_{j,k}\left(i\right)=0,l=0,1,...,N-1$

for the Daubechies- $N$ discrete wavelets.

$<\underline{f},{\underline{\psi }}_{j,k}>={\underline{f}}^{T}{\underline{\psi }}_{j,k}$

Thus, we also have an analogous approximation result: If $\underline{f}$ are samples from a piecewise degree $\le N$ polynomial function with a finite number $m$ of discontinuities, then $\underline{f}$ has $O\left(mJ\right)$ non-zero wavelet coefficients.

## ApproximatingFunctions with wavelets

Suppose $f\in {B}^{\alpha }\left({C}_{\alpha }\right)$ and has a finite number of discontinuities. Let ${f}_{p}$ denote piecewise degree- $N\left(N=⌈\alpha ⌉\right)$ polynomial approximation to $f$ with $O\left(k\right)$ pieces; a uniform partition into $k$ equal length intervals followed by addition splits at the points of discontinuity.

Then

$|f\left(t\right)-{f}_{p}\left(t\right){|}^{2}=O\left({k}^{\left(}-2\alpha \right)\right)\forall t\in \left[0,1\right]$
$⇒|f\left(i/n\right)-{f}_{p}{\left(i/n\right)|}^{2}=O\left({k}^{-2\alpha }\right)i=1,...,n$
$⇒1/n||\underline{f}-{\underline{f}}_{p}{||}_{{L}_{2}}^{2}=O\left({k}^{-2\alpha }\right)\right)$

and ${\underline{f}}_{p}$ has $O\left(klo{g}_{2}n\right)$ non-zero coefficients according to our previous analysis.

## Wavelets in 2-d

Suppose $f$ is a 2-D image that is piecewise polynomial:

A pruned RDP of $k$ squares decorated with polyfits gives

$||f-{f}_{k}{||}_{{L}_{2}}^{2}=O\left({k}^{-1}\right).$

Let $\underline{f}{=\left[f\left(i/k,j/k\right)}_{i,j=1}^{n}$ sample range.

${f}_{n}\left(t\right)=\sum _{i,j=1}^{k}f\left(i/k,j/kk\right){\mathbf{1}}_{\left\{t\in \left[i-1/k,i/k\right)x\left[j-1/k,j/k\right)\right\}}$

then

$||f-{f}_{n}{||}_{{L}_{2}}^{2}=O\left({k}^{-1}\right)$

$O\left(1\right)$ error on $k$ of the ${k}^{2}$ pixels, near zero elsewhere. The DWT of $\underline{f}$ has $O\left(k\right)$ non-zero wavelet coefficients. $O\left({2}^{j}\right)$ at scale ${2}^{-j},j=0,1,...,logn.$

#### Questions & Answers

how can chip be made from sand
Eke Reply
is this allso about nanoscale material
Almas
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

### Read also:

#### Get Jobilize Job Search Mobile App in your pocket Now!

Source:  OpenStax, Statistical learning theory. OpenStax CNX. Apr 10, 2009 Download for free at http://cnx.org/content/col10532/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Statistical learning theory' conversation and receive update notifications? By OpenStax By OpenStax By Jazzycazz Jackson By Anh Dao By Stephen Voron By Qqq Qqq By Edgar Delgado By OpenStax By Richley Crapo By Rhodes