# 0.15 Appendix 1: fft flowgraphs

 Page 1 / 1
Flowgraphs of various radix-2 and 4 Cooley Tukey FFTs and Split Radix FFTs.

## Signal flow graphs of cooley-tukey ffts

The following four figures are flow graphs for Radix-2 Cooley-Tukey FFTs. The first is a length-16, decimation-in-frequency Radix-2 FFT with the input data in order and output data scrambled. The first stage has 8 length-2 "butterflies" (which overlap in the figure) followed by 8 multiplications by powers of W which are called "twiddle factors". The second stage has 2 length-8 FFTs which are each calculated by 4 butterflies followed by 4 multiplies. The third stage has 4 length-4 FFTs, each calculated by 2 butterflies followed by 2 multiplies and the last stage is simply 8 butterflies followed by trivial multiplies by one. This flow graph should be compared with the index map in Polynomial Description of Signals , the polynomial decomposition in The DFT as Convolution or Filtering , and the program in Appendix 3 . In the program, the butterflies and twiddle factor multiplications are done together in the inner most loop. The outer most loop indexes through the stages. If the length of the FFT is a power of two, the number of stages is that power (log N).

The second figure below is a length-16, decimation-in-time FFT with the input data scrambled and output data in order. The first stage has 8 length-2 "butterflies" followed by 8 twiddle factors multiplications. The second stage has 4 length-4 FFTs which are each calculated by 2 butterflies followed by 2 multiplies. The third stage has 2 length-8 FFTs, each calculated by 4 butterflies followed by 8 multiplies and the last stage is simply 8 length-2 butterflies. This flow graph should be compared with the index map in Polynomial Description of Signals , the polynomial decomposition in The DFT as Convolution or Filtering , and the program in Appendix 3 . Here, the FFT must be preceded by a scrambler.

The third and fourth figures below are a length-16 decimation-in-frequency and a decimation-in-time but, in contrast to the figures above, the DIF has the output in order which requires a scrambled input and the DIT has the input in order which requires the output be unscrambled. Compare with the first two figures. Note the order of the twiddle factors. The number of additions and multiplications in all four flow graphs is the same and the structure of the three-loop program which executes the flow graph is the same.

The following is a length-16, decimation-in-frequency Radix-4 FFT with the input data in order and output data scrambled. There are two stages with the first stage having 4 length-4 "butterflies" followed by 12 multiplications by powers of W which are called "twiddle factors. The second stage has 4 length-4 FFTs which are each calculated by 4 butterflies followed by 4 multiplies. Note, each stage here looks like two stages but it is one and there is only one place where twiddle factor multiplications appear. This flow graph should be compared with the index map in Polynomial Description of Signals , the polynomial decomposition in The DFT as Convolution or Filtering , and the program in Appendix 3 . Log to the base 4 of 16 is 2. The total number of twiddle factor multiplication here is 12 compared to 24 for the radix-2. The unscrambler is a base-four reverse order counter rather than a bit reverse counter, however, a modification of the radix four butterflies will allow a bit reverse counter to be used with the radix-4 FFT as with the radix-2.

The following two flowgraphs are length-16, decimation-in-frequency Split Radix FFTs with the input data in order and output data scrambled. Because the "butterflies" are L shaped, the stages do not progress uniformly like the Radix-2 or 4. These two figures are the same with the first drawn in a way to compare with the Radix-2 and 4, and the second to illustrate the L shaped butterflies. These flow graphs should be compared with the index map in Polynomial Description of Signals and the program in Appendix 3 . Because of the non-uniform stages, the program indexing is more complicated. Although the number of twiddle factor multiplications is 12 as was the radix-4 case, for longer lengths, the split-radix has slightly fewer multiplications than the radix-4.

Because the structures of the radix-2, radix-4, and split-radix FFTs are the same, the number of data additions is same for all of them. However, each complex twiddle factor multiplication requires two real additions (and four real multiplications) the number of additions will be fewer for the structures with fewer multiplications.

anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Got questions? Join the online conversation and get instant answers!