# 0.14 Maximum likelihood and complexity regularization  (Page 2/2)

 Page 2 / 2

## Error bound

Suppose that we have a pool of candidate functions $\mathcal{F}$ , and we want to select a function $f$ from $\mathcal{F}$ using the training data. Our usual approach is to show that the distribution of $\stackrel{^}{{R}_{n}}\left(f\right)$ concentrates about its mean as $n$ grows. First, we assign a complexity $c\left(f\right)>0$ to each $f\in \mathcal{F}$ so that $\sum {2}^{-c\left(f\right)}\le 1$ . Then, apply the union bound to get a uniform concentration inequality holding for all models in $\mathcal{F}$ . Finally, we use this concentration inequality to bound the expected risk of our selected model.

We will essentially accomplish the same result here, but avoid the need for explicit concentration inequalities and instead make use of the information-theoretic bounds.

We would like to select an $f\in \mathcal{F}$ so that the excess risk is small.

$\begin{array}{ccc}\hfill 0& \le & R\left(f\right)-R\left({f}^{*}\right)\hfill \\ & =& \frac{1}{n}E\left[log{p}_{{f}^{*}}\left(Y\right)-log{p}_{f}\left(Y\right)\right]\hfill \\ & =& \frac{1}{n}E\left[log,\frac{{p}_{{f}^{*}}\left(Y\right)}{{p}_{f}\left(Y\right)}\right]\hfill \\ & \equiv & \frac{1}{n}K\left({p}_{f},{p}_{{f}^{*}}\right)\hfill \end{array}$

where

$K\left({p}_{f},{p}_{{f}^{*}}\right)=\sum _{i=1}^{n}\underset{K\left({p}_{f\left({x}_{i}\right)},{p}_{{f}^{*}\left({x}_{i}\right)}\right)}{\underbrace{\left(\int ,log,\frac{{p}_{{f}^{*}\left({x}_{i}\right)}\left({y}_{i}\right)}{{p}_{f\left({x}_{i}\right)}\left({y}_{i}\right)},·,{p}_{{f}^{*}\left({x}_{i}\right)},\left({y}_{i}\right),\phantom{\rule{0.166667em}{0ex}},\mathrm{d},{y}_{i}\right)}}$

is again the KL divergence.

Unfortunately, as mentioned before, $K\left({p}_{f},{p}_{{f}^{*}}\right)$ is not a true distance. So instead we will focus on the expected squared Hellinger distance as our measure of performance. We will get a bound on

$\frac{1}{n}E\left[{H}^{2},\left({p}_{f}\left(Y\right),{p}_{{f}^{*}}\left(Y\right)\right)\right]=\frac{1}{n}\sum _{i=1}^{n}\left(\int ,{\left(\sqrt{{p}_{f\left({x}_{i}\right)}\left({y}_{i}\right)},-,\sqrt{{p}_{{f}^{*}\left({x}_{i}\right)}\left({y}_{i}\right)}\right)}^{2},\phantom{\rule{0.166667em}{0ex}},\mathrm{d},{y}_{i}\right).$

Theorem

## Li-barron 2000, kolaczyk-nowak 2002

Let ${\left\{{x}_{i},{Y}_{i}\right\}}_{i=1}^{n}$ be a random sample of training data with $\left\{{Y}_{i}\right\}$ independent,

${Y}_{i}\sim {p}_{{f}^{*}\left({x}_{i}\right)}\left({y}_{i}\right)\phantom{\rule{1.em}{0ex}},i=1,...,n$

for some unknown function ${f}^{*}$ .

Suppose we have a collection of candidate functions $\mathcal{F}$ , and complexities $c\left(f\right)>0,f\in \mathcal{F}$ , satisfying

$\sum _{f\in \mathcal{F}}{2}^{-c\left(f\right)}\le 1.$

Define the complexity-regularized estimator

$\stackrel{^}{{f}_{n}}\equiv arg\phantom{\rule{0.166667em}{0ex}}\underset{f\in \mathcal{F}}{min}\left\{-,\frac{1}{n},\sum _{i=1}^{n},log,\phantom{\rule{0.166667em}{0ex}},{p}_{f},\left({Y}_{i}\right),+,\frac{2c\left(f\right)log2}{n}\right\}\phantom{\rule{0.166667em}{0ex}}.$

Then,

$\begin{array}{ccc}\hfill \frac{1}{n}E\left[{H}^{2},\left({p}_{f}\left(Y\right),{p}_{{f}^{*}}\left(Y\right)\right)\right]& \le & -\frac{2}{n}E\left[log,\left(A,\left(,{p}_{f},\left(Y\right),,,{p}_{{f}^{*}},\left(Y\right),\right)\right)\right]\hfill \\ & \le & \underset{f\in \mathcal{F}}{min}\left\{\frac{1}{n},K,\left({p}_{f},{p}_{{f}^{*}}\right),+,\frac{2c\left(f\right)log2}{n}\right\}\phantom{\rule{0.166667em}{0ex}}.\hfill \end{array}$

Before proving the theorem, let's look at a special case.

## Gaussian noise

Suppose ${Y}_{i}=f\left({x}_{i}\right)+{W}_{i}\phantom{\rule{1.em}{0ex}},{W}_{i}\stackrel{i.i.d.}{\sim }\mathcal{N}\left(0,{\sigma }^{2}\right)$ .

${p}_{f\left({x}_{i}\right)}\left({y}_{i}\right)=\frac{1}{\sqrt{2\pi {\sigma }^{2}}}{e}^{-\frac{{\left({y}_{i}-f\left({x}_{i}\right)\right)}^{2}}{2{\sigma }^{2}}}.$

Using results from example 1 , we have

$\begin{array}{ccc}\hfill -2logA\left({p}_{\stackrel{^}{{f}_{n}}},\left(Y\right),,,{p}_{{f}^{*}},\left(Y\right)\right)& =& \sum _{i=1}^{n}\phantom{\rule{0.166667em}{0ex}}-2logA\left({p}_{\stackrel{^}{{f}_{n}}\left({x}_{i}\right)},\left({Y}_{i}\right),,,{p}_{{f}^{*}\left({x}_{i}\right)},\left({Y}_{i}\right)\right)\hfill \\ & =& \sum _{i=1}^{n}\phantom{\rule{0.166667em}{0ex}}-2log\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}\left({x}_{i}\right)}\left({y}_{i}\right)·{p}_{{f}^{*}\left({x}_{i}\right)}\left({y}_{i}\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}{y}_{i}\hfill \\ & =& \frac{1}{4{\sigma }^{2}}\sum _{i=1}^{n}{\left(\stackrel{^}{{f}_{n}},\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2}.\hfill \end{array}$

Then,

$-\frac{2}{n}E\left[log,\phantom{\rule{0.166667em}{0ex}},A,\left(,{p}_{\stackrel{^}{{f}_{n}}},,,{p}_{{f}^{*}},\right)\right]=\frac{1}{4{\sigma }^{2}n}\sum _{i=1}^{n}E\left[{\left(\stackrel{^}{{f}_{n}},\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2}\right].$

We also have,

$\begin{array}{ccc}\hfill \frac{1}{n}K\left({p}_{f},{p}_{{f}^{*}}\right)& =& \frac{1}{n}\sum _{i=1}^{n}\frac{{\left(f,\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2}}{2{\sigma }^{2}}\hfill \\ \hfill -log\phantom{\rule{0.166667em}{0ex}}{p}_{f}\left(Y\right)& =& \sum _{i=1}^{n}\frac{{\left({Y}_{i}-f\left({X}_{i}\right)\right)}^{2}}{2{\sigma }^{2}}\phantom{\rule{0.166667em}{0ex}}.\hfill \end{array}$

Combine everything together to get

$\stackrel{^}{{f}_{n}}=arg\underset{f\in \mathcal{F}}{min}\left\{\frac{1}{n},\sum _{i=1}^{n},\frac{{\left({Y}_{i}-f\left({X}_{i}\right)\right)}^{2}}{2{\sigma }^{2}},+,\frac{2c\left(f\right)log2}{n}\right\}\phantom{\rule{0.166667em}{0ex}}.$

The theorem tells us that

$\frac{1}{4n}\sum _{i=1}^{n}E\left[\frac{{\left(\stackrel{^}{{f}_{n}},\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2}}{{\sigma }^{2}}\right]\le \underset{f\in \mathcal{F}}{min}\left\{\frac{1}{n},\sum _{i=1}^{n},\frac{{\left(f,\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2}}{2{\sigma }^{2}},+,\frac{2c\left(f\right)log2}{n}\right\}$

or

$\frac{1}{n}\sum _{i=1}^{n}E\left[{\left(\stackrel{^}{{f}_{n}},\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2}\right]\le \underset{f\in \mathcal{F}}{min}\left\{\frac{2}{n},\sum _{i=1}^{n},{\left(f,\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2},+,\frac{8{\sigma }^{2}c\left(f\right)log2}{n}\right\}.$

Now let's come back to the proof.

Proof
$\begin{array}{ccc}\hfill {H}^{2}\left({p}_{\stackrel{^}{{f}_{n}}},,,{p}_{{f}^{*}}\right)& =& \int {\left(\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)},-,\sqrt{{p}_{{f}^{*}}\left(y\right)}\right)}^{2}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y\hfill \\ & \le & -2log\underset{affinity}{\underbrace{\left(\int ,\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)},\phantom{\rule{0.166667em}{0ex}},\mathrm{d},y\right)}}\hfill \end{array}$
$⇒$
$E\left[{H}^{2},\left({p}_{\stackrel{^}{{f}_{n}}},,,{p}_{{f}^{*}}\right)\right]\le 2\phantom{\rule{0.166667em}{0ex}}E\left[log,\left(\frac{1}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\phantom{\rule{0.166667em}{0ex}}.$

Now, define the theoretical analog of $\stackrel{^}{{f}_{n}}$ :

${f}_{n}=arg\underset{f\in \mathcal{F}}{min}\left\{\frac{1}{n},K,\left({p}_{f},,,{p}_{{f}^{*}}\right),+,\frac{2c\left(f\right)log2}{n}\right\}.$

Since

$\begin{array}{ccc}\hfill \stackrel{^}{{f}_{n}}& =& arg\underset{f\in \mathcal{F}}{min}\left\{-,\frac{1}{n},log,{p}_{f},\left(Y\right),+,\frac{2c\left(f\right)log2}{n}\right\}\hfill \\ & =& arg\underset{f\in \mathcal{F}}{max}\left\{\frac{1}{n},\left(log,{p}_{f},\left(Y\right),-,2,c,\left(f\right),log,2\right)\right\}\hfill \\ & =& arg\underset{f\in \mathcal{F}}{max}\left\{\frac{1}{2},\left(log,{p}_{f},\left(Y\right),-,2,c,\left(f\right),log,2\right)\right\}\hfill \\ & =& arg\underset{f\in \mathcal{F}}{max}\left\{log,\left(\sqrt{{p}_{f}\left(Y\right)},·,{e}^{-c\left(f\right)log2}\right)\right\}\hfill \\ & =& arg\underset{f\in \mathcal{F}}{max}\left\{\sqrt{{p}_{f}\left(Y\right)},·,{e}^{-c\left(f\right)log2}\right\}\hfill \end{array}$

we can see that

$\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{\sqrt{{p}_{{f}_{n}}\left(Y\right)}{e}^{-c\left({f}_{n}\right)log2}}\ge 1\phantom{\rule{0.166667em}{0ex}}.$

Then can write

$\begin{array}{ccc}\hfill E\left[{H}^{2},\left({p}_{\stackrel{^}{{f}_{n}}},,,{p}_{{f}^{*}}\right)\right]& \le & 2\phantom{\rule{0.166667em}{0ex}}E\left[log,\left(\frac{1}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\hfill \\ & \le & 2\phantom{\rule{0.166667em}{0ex}}E\left[log,\left(\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{\sqrt{{p}_{{f}_{n}}\left(Y\right)}{e}^{-c\left({f}_{n}\right)log2}},·,\frac{1}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}·{p}_{{f}^{*}}}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\phantom{\rule{0.166667em}{0ex}}.\hfill \end{array}$

Now, simply multiply the argument inside the $log$ by $\sqrt{\frac{{p}_{{f}^{*}}\left(Y\right)}{{p}_{{f}^{*}}\left(Y\right)}}$ to get

$\begin{array}{ccc}\hfill E\left[{H}^{2},\left({p}_{\stackrel{^}{{f}_{n}}},,,{p}_{{f}^{*}}\right)\right]& \le & 2\phantom{\rule{0.166667em}{0ex}}E\left[log,\left(\frac{\sqrt{{p}_{{f}^{*}}\left(Y\right)}}{\sqrt{{p}_{{f}_{n}}\left(Y\right)}},\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}}{\sqrt{{p}_{{f}^{*}}\left(Y\right)}},\frac{{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{{e}^{-c\left({f}_{n}\right)log2}},·,\frac{1}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\hfill \\ & =& E\left[log,\left(\frac{{p}_{{f}^{*}}\left(Y\right)}{{p}_{{f}_{n}}\left(Y\right)}\right)\right]+2c\left({f}_{n}\right)log2\hfill \\ & & \phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}+2E\left[log,\left(\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}}{\sqrt{{p}_{{f}^{*}}\left(Y\right)}},·,\frac{{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\hfill \\ & =& K\left({p}_{{f}_{n}},,,{p}_{{f}^{*}}\right)+2c\left({f}_{n}\right)log2\hfill \\ & & \phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}+2E\left[log,\left(\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}}{\sqrt{{p}_{{f}^{*}}\left(Y\right)}},·,\frac{{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\phantom{\rule{0.166667em}{0ex}}.\hfill \end{array}$

The terms $K\left({p}_{{f}_{n}},,,{p}_{{f}^{*}}\right)+2c\left({f}_{n}\right)log2$ are precisely what we wanted for the upper bound of the theorem. So, to finish theproof we only need to show that the last term is non-positive. Applying Jensen's inequality, we get

$2E\left[log,\left(\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}}{\sqrt{{p}_{{f}^{*}}\left(Y\right)}},·,\frac{{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\le 2log\left(E,\left[{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2},·,\frac{\sqrt{\frac{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}{{p}_{{f}^{*}}\left(Y\right)}}}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right]\right)\phantom{\rule{0.166667em}{0ex}}.$

Both $Y$ and $\stackrel{^}{{f}_{n}}$ are random, which makes the expectation difficult to compute. However, we can simplify the problem using the union bound,which eliminates the dependence on $\stackrel{^}{{f}_{n}}$ :

$\begin{array}{ccc}\hfill 2E\left[log,\left(\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}}{\sqrt{{p}_{{f}^{*}}\left(Y\right)}},·,\frac{{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]& \le & 2log\left(E,\left[\sum _{f\in \mathcal{F}},{e}^{-c\left(f\right)log2},·,\frac{\sqrt{\frac{{p}_{f}\left(Y\right)}{{p}_{{f}^{*}}\left(Y\right)}}}{\int \sqrt{{p}_{f}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right]\right)\hfill \\ & =& 2log\left(\sum _{f\in \mathcal{F}},{2}^{-c\left(f\right)},\frac{E\left[\sqrt{\frac{{p}_{f}\left(Y\right)}{{p}_{{f}^{*}}\left(Y\right)}}\right]}{\int \sqrt{{p}_{f}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\hfill \\ & =& 2log\left(\sum _{f\in \mathcal{F}},{2}^{-c\left(f\right)}\right)\hfill \\ & \le & 0.\hfill \end{array}$

where the last two lines come from

$E\left[\sqrt{\frac{{p}_{f}\left(Y\right)}{{p}_{{f}^{*}}\left(Y\right)}}\right]=\int \sqrt{\frac{{p}_{f}\left(y\right)}{{p}_{{f}^{*}}\left(y\right)}}·{p}_{{f}^{*}}\left(y\right)\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y=\int \sqrt{{p}_{f}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y$

and

$\sum _{f\in \mathcal{F}}{2}^{-c\left(f\right)}\le 1.$

what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
Got questions? Join the online conversation and get instant answers! By By By  By By  By  By