0.14 Maximum likelihood and complexity regularization  (Page 2/2)

 Page 2 / 2

Error bound

Suppose that we have a pool of candidate functions $\mathcal{F}$ , and we want to select a function $f$ from $\mathcal{F}$ using the training data. Our usual approach is to show that the distribution of $\stackrel{^}{{R}_{n}}\left(f\right)$ concentrates about its mean as $n$ grows. First, we assign a complexity $c\left(f\right)>0$ to each $f\in \mathcal{F}$ so that $\sum {2}^{-c\left(f\right)}\le 1$ . Then, apply the union bound to get a uniform concentration inequality holding for all models in $\mathcal{F}$ . Finally, we use this concentration inequality to bound the expected risk of our selected model.

We will essentially accomplish the same result here, but avoid the need for explicit concentration inequalities and instead make use of the information-theoretic bounds.

We would like to select an $f\in \mathcal{F}$ so that the excess risk is small.

$\begin{array}{ccc}\hfill 0& \le & R\left(f\right)-R\left({f}^{*}\right)\hfill \\ & =& \frac{1}{n}E\left[log{p}_{{f}^{*}}\left(Y\right)-log{p}_{f}\left(Y\right)\right]\hfill \\ & =& \frac{1}{n}E\left[log,\frac{{p}_{{f}^{*}}\left(Y\right)}{{p}_{f}\left(Y\right)}\right]\hfill \\ & \equiv & \frac{1}{n}K\left({p}_{f},{p}_{{f}^{*}}\right)\hfill \end{array}$

where

$K\left({p}_{f},{p}_{{f}^{*}}\right)=\sum _{i=1}^{n}\underset{K\left({p}_{f\left({x}_{i}\right)},{p}_{{f}^{*}\left({x}_{i}\right)}\right)}{\underbrace{\left(\int ,log,\frac{{p}_{{f}^{*}\left({x}_{i}\right)}\left({y}_{i}\right)}{{p}_{f\left({x}_{i}\right)}\left({y}_{i}\right)},·,{p}_{{f}^{*}\left({x}_{i}\right)},\left({y}_{i}\right),\phantom{\rule{0.166667em}{0ex}},\mathrm{d},{y}_{i}\right)}}$

is again the KL divergence.

Unfortunately, as mentioned before, $K\left({p}_{f},{p}_{{f}^{*}}\right)$ is not a true distance. So instead we will focus on the expected squared Hellinger distance as our measure of performance. We will get a bound on

$\frac{1}{n}E\left[{H}^{2},\left({p}_{f}\left(Y\right),{p}_{{f}^{*}}\left(Y\right)\right)\right]=\frac{1}{n}\sum _{i=1}^{n}\left(\int ,{\left(\sqrt{{p}_{f\left({x}_{i}\right)}\left({y}_{i}\right)},-,\sqrt{{p}_{{f}^{*}\left({x}_{i}\right)}\left({y}_{i}\right)}\right)}^{2},\phantom{\rule{0.166667em}{0ex}},\mathrm{d},{y}_{i}\right).$

Theorem

Li-barron 2000, kolaczyk-nowak 2002

Let ${\left\{{x}_{i},{Y}_{i}\right\}}_{i=1}^{n}$ be a random sample of training data with $\left\{{Y}_{i}\right\}$ independent,

${Y}_{i}\sim {p}_{{f}^{*}\left({x}_{i}\right)}\left({y}_{i}\right)\phantom{\rule{1.em}{0ex}},i=1,...,n$

for some unknown function ${f}^{*}$ .

Suppose we have a collection of candidate functions $\mathcal{F}$ , and complexities $c\left(f\right)>0,f\in \mathcal{F}$ , satisfying

$\sum _{f\in \mathcal{F}}{2}^{-c\left(f\right)}\le 1.$

Define the complexity-regularized estimator

$\stackrel{^}{{f}_{n}}\equiv arg\phantom{\rule{0.166667em}{0ex}}\underset{f\in \mathcal{F}}{min}\left\{-,\frac{1}{n},\sum _{i=1}^{n},log,\phantom{\rule{0.166667em}{0ex}},{p}_{f},\left({Y}_{i}\right),+,\frac{2c\left(f\right)log2}{n}\right\}\phantom{\rule{0.166667em}{0ex}}.$

Then,

$\begin{array}{ccc}\hfill \frac{1}{n}E\left[{H}^{2},\left({p}_{f}\left(Y\right),{p}_{{f}^{*}}\left(Y\right)\right)\right]& \le & -\frac{2}{n}E\left[log,\left(A,\left(,{p}_{f},\left(Y\right),,,{p}_{{f}^{*}},\left(Y\right),\right)\right)\right]\hfill \\ & \le & \underset{f\in \mathcal{F}}{min}\left\{\frac{1}{n},K,\left({p}_{f},{p}_{{f}^{*}}\right),+,\frac{2c\left(f\right)log2}{n}\right\}\phantom{\rule{0.166667em}{0ex}}.\hfill \end{array}$

Before proving the theorem, let's look at a special case.

Gaussian noise

Suppose ${Y}_{i}=f\left({x}_{i}\right)+{W}_{i}\phantom{\rule{1.em}{0ex}},{W}_{i}\stackrel{i.i.d.}{\sim }\mathcal{N}\left(0,{\sigma }^{2}\right)$ .

${p}_{f\left({x}_{i}\right)}\left({y}_{i}\right)=\frac{1}{\sqrt{2\pi {\sigma }^{2}}}{e}^{-\frac{{\left({y}_{i}-f\left({x}_{i}\right)\right)}^{2}}{2{\sigma }^{2}}}.$

Using results from example 1 , we have

$\begin{array}{ccc}\hfill -2logA\left({p}_{\stackrel{^}{{f}_{n}}},\left(Y\right),,,{p}_{{f}^{*}},\left(Y\right)\right)& =& \sum _{i=1}^{n}\phantom{\rule{0.166667em}{0ex}}-2logA\left({p}_{\stackrel{^}{{f}_{n}}\left({x}_{i}\right)},\left({Y}_{i}\right),,,{p}_{{f}^{*}\left({x}_{i}\right)},\left({Y}_{i}\right)\right)\hfill \\ & =& \sum _{i=1}^{n}\phantom{\rule{0.166667em}{0ex}}-2log\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}\left({x}_{i}\right)}\left({y}_{i}\right)·{p}_{{f}^{*}\left({x}_{i}\right)}\left({y}_{i}\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}{y}_{i}\hfill \\ & =& \frac{1}{4{\sigma }^{2}}\sum _{i=1}^{n}{\left(\stackrel{^}{{f}_{n}},\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2}.\hfill \end{array}$

Then,

$-\frac{2}{n}E\left[log,\phantom{\rule{0.166667em}{0ex}},A,\left(,{p}_{\stackrel{^}{{f}_{n}}},,,{p}_{{f}^{*}},\right)\right]=\frac{1}{4{\sigma }^{2}n}\sum _{i=1}^{n}E\left[{\left(\stackrel{^}{{f}_{n}},\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2}\right].$

We also have,

$\begin{array}{ccc}\hfill \frac{1}{n}K\left({p}_{f},{p}_{{f}^{*}}\right)& =& \frac{1}{n}\sum _{i=1}^{n}\frac{{\left(f,\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2}}{2{\sigma }^{2}}\hfill \\ \hfill -log\phantom{\rule{0.166667em}{0ex}}{p}_{f}\left(Y\right)& =& \sum _{i=1}^{n}\frac{{\left({Y}_{i}-f\left({X}_{i}\right)\right)}^{2}}{2{\sigma }^{2}}\phantom{\rule{0.166667em}{0ex}}.\hfill \end{array}$

Combine everything together to get

$\stackrel{^}{{f}_{n}}=arg\underset{f\in \mathcal{F}}{min}\left\{\frac{1}{n},\sum _{i=1}^{n},\frac{{\left({Y}_{i}-f\left({X}_{i}\right)\right)}^{2}}{2{\sigma }^{2}},+,\frac{2c\left(f\right)log2}{n}\right\}\phantom{\rule{0.166667em}{0ex}}.$

The theorem tells us that

$\frac{1}{4n}\sum _{i=1}^{n}E\left[\frac{{\left(\stackrel{^}{{f}_{n}},\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2}}{{\sigma }^{2}}\right]\le \underset{f\in \mathcal{F}}{min}\left\{\frac{1}{n},\sum _{i=1}^{n},\frac{{\left(f,\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2}}{2{\sigma }^{2}},+,\frac{2c\left(f\right)log2}{n}\right\}$

or

$\frac{1}{n}\sum _{i=1}^{n}E\left[{\left(\stackrel{^}{{f}_{n}},\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2}\right]\le \underset{f\in \mathcal{F}}{min}\left\{\frac{2}{n},\sum _{i=1}^{n},{\left(f,\left({x}_{i}\right),-,{f}^{*},\left({x}_{i}\right)\right)}^{2},+,\frac{8{\sigma }^{2}c\left(f\right)log2}{n}\right\}.$

Now let's come back to the proof.

Proof
$\begin{array}{ccc}\hfill {H}^{2}\left({p}_{\stackrel{^}{{f}_{n}}},,,{p}_{{f}^{*}}\right)& =& \int {\left(\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)},-,\sqrt{{p}_{{f}^{*}}\left(y\right)}\right)}^{2}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y\hfill \\ & \le & -2log\underset{affinity}{\underbrace{\left(\int ,\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)},\phantom{\rule{0.166667em}{0ex}},\mathrm{d},y\right)}}\hfill \end{array}$
$⇒$
$E\left[{H}^{2},\left({p}_{\stackrel{^}{{f}_{n}}},,,{p}_{{f}^{*}}\right)\right]\le 2\phantom{\rule{0.166667em}{0ex}}E\left[log,\left(\frac{1}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\phantom{\rule{0.166667em}{0ex}}.$

Now, define the theoretical analog of $\stackrel{^}{{f}_{n}}$ :

${f}_{n}=arg\underset{f\in \mathcal{F}}{min}\left\{\frac{1}{n},K,\left({p}_{f},,,{p}_{{f}^{*}}\right),+,\frac{2c\left(f\right)log2}{n}\right\}.$

Since

$\begin{array}{ccc}\hfill \stackrel{^}{{f}_{n}}& =& arg\underset{f\in \mathcal{F}}{min}\left\{-,\frac{1}{n},log,{p}_{f},\left(Y\right),+,\frac{2c\left(f\right)log2}{n}\right\}\hfill \\ & =& arg\underset{f\in \mathcal{F}}{max}\left\{\frac{1}{n},\left(log,{p}_{f},\left(Y\right),-,2,c,\left(f\right),log,2\right)\right\}\hfill \\ & =& arg\underset{f\in \mathcal{F}}{max}\left\{\frac{1}{2},\left(log,{p}_{f},\left(Y\right),-,2,c,\left(f\right),log,2\right)\right\}\hfill \\ & =& arg\underset{f\in \mathcal{F}}{max}\left\{log,\left(\sqrt{{p}_{f}\left(Y\right)},·,{e}^{-c\left(f\right)log2}\right)\right\}\hfill \\ & =& arg\underset{f\in \mathcal{F}}{max}\left\{\sqrt{{p}_{f}\left(Y\right)},·,{e}^{-c\left(f\right)log2}\right\}\hfill \end{array}$

we can see that

$\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{\sqrt{{p}_{{f}_{n}}\left(Y\right)}{e}^{-c\left({f}_{n}\right)log2}}\ge 1\phantom{\rule{0.166667em}{0ex}}.$

Then can write

$\begin{array}{ccc}\hfill E\left[{H}^{2},\left({p}_{\stackrel{^}{{f}_{n}}},,,{p}_{{f}^{*}}\right)\right]& \le & 2\phantom{\rule{0.166667em}{0ex}}E\left[log,\left(\frac{1}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\hfill \\ & \le & 2\phantom{\rule{0.166667em}{0ex}}E\left[log,\left(\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{\sqrt{{p}_{{f}_{n}}\left(Y\right)}{e}^{-c\left({f}_{n}\right)log2}},·,\frac{1}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}·{p}_{{f}^{*}}}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\phantom{\rule{0.166667em}{0ex}}.\hfill \end{array}$

Now, simply multiply the argument inside the $log$ by $\sqrt{\frac{{p}_{{f}^{*}}\left(Y\right)}{{p}_{{f}^{*}}\left(Y\right)}}$ to get

$\begin{array}{ccc}\hfill E\left[{H}^{2},\left({p}_{\stackrel{^}{{f}_{n}}},,,{p}_{{f}^{*}}\right)\right]& \le & 2\phantom{\rule{0.166667em}{0ex}}E\left[log,\left(\frac{\sqrt{{p}_{{f}^{*}}\left(Y\right)}}{\sqrt{{p}_{{f}_{n}}\left(Y\right)}},\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}}{\sqrt{{p}_{{f}^{*}}\left(Y\right)}},\frac{{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{{e}^{-c\left({f}_{n}\right)log2}},·,\frac{1}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\hfill \\ & =& E\left[log,\left(\frac{{p}_{{f}^{*}}\left(Y\right)}{{p}_{{f}_{n}}\left(Y\right)}\right)\right]+2c\left({f}_{n}\right)log2\hfill \\ & & \phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}+2E\left[log,\left(\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}}{\sqrt{{p}_{{f}^{*}}\left(Y\right)}},·,\frac{{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\hfill \\ & =& K\left({p}_{{f}_{n}},,,{p}_{{f}^{*}}\right)+2c\left({f}_{n}\right)log2\hfill \\ & & \phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}+2E\left[log,\left(\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}}{\sqrt{{p}_{{f}^{*}}\left(Y\right)}},·,\frac{{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\phantom{\rule{0.166667em}{0ex}}.\hfill \end{array}$

The terms $K\left({p}_{{f}_{n}},,,{p}_{{f}^{*}}\right)+2c\left({f}_{n}\right)log2$ are precisely what we wanted for the upper bound of the theorem. So, to finish theproof we only need to show that the last term is non-positive. Applying Jensen's inequality, we get

$2E\left[log,\left(\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}}{\sqrt{{p}_{{f}^{*}}\left(Y\right)}},·,\frac{{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]\le 2log\left(E,\left[{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2},·,\frac{\sqrt{\frac{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}{{p}_{{f}^{*}}\left(Y\right)}}}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right]\right)\phantom{\rule{0.166667em}{0ex}}.$

Both $Y$ and $\stackrel{^}{{f}_{n}}$ are random, which makes the expectation difficult to compute. However, we can simplify the problem using the union bound,which eliminates the dependence on $\stackrel{^}{{f}_{n}}$ :

$\begin{array}{ccc}\hfill 2E\left[log,\left(\frac{\sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(Y\right)}}{\sqrt{{p}_{{f}^{*}}\left(Y\right)}},·,\frac{{e}^{-c\left(\stackrel{^}{{f}_{n}}\right)log2}}{\int \sqrt{{p}_{\stackrel{^}{{f}_{n}}}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\right]& \le & 2log\left(E,\left[\sum _{f\in \mathcal{F}},{e}^{-c\left(f\right)log2},·,\frac{\sqrt{\frac{{p}_{f}\left(Y\right)}{{p}_{{f}^{*}}\left(Y\right)}}}{\int \sqrt{{p}_{f}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right]\right)\hfill \\ & =& 2log\left(\sum _{f\in \mathcal{F}},{2}^{-c\left(f\right)},\frac{E\left[\sqrt{\frac{{p}_{f}\left(Y\right)}{{p}_{{f}^{*}}\left(Y\right)}}\right]}{\int \sqrt{{p}_{f}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y}\right)\hfill \\ & =& 2log\left(\sum _{f\in \mathcal{F}},{2}^{-c\left(f\right)}\right)\hfill \\ & \le & 0.\hfill \end{array}$

where the last two lines come from

$E\left[\sqrt{\frac{{p}_{f}\left(Y\right)}{{p}_{{f}^{*}}\left(Y\right)}}\right]=\int \sqrt{\frac{{p}_{f}\left(y\right)}{{p}_{{f}^{*}}\left(y\right)}}·{p}_{{f}^{*}}\left(y\right)\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y=\int \sqrt{{p}_{f}\left(y\right)·{p}_{{f}^{*}}\left(y\right)}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}y$

and

$\sum _{f\in \mathcal{F}}{2}^{-c\left(f\right)}\le 1.$

Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!