# 0.13 Trigonometry

 Page 1 / 3

## Introduction

Trigonometry is a very important tool for engineers. This reading mentions just a few of the many applications that involve trigonometry to solve engineering problems.

Trigonometry means the study of the triangle. Most often, it refers to finding angles of a triangle when the lengths of the sides are known, or finding the lengths of two sides when the angles and one of the side lengths are known.

As you complete this reading, be sure to pay special attention to the variety of areas in which engineers utilize trigonometry to develop the solutions to problems. Rest assured that there are an untold number of applications of trigonometry in engineering. This reading only introduces you to a few. You will learn many more as you progress through your engineering studies.

Virtually all engineers use trigonometry in their work on a regular basis. Things like the generation of electrical current or a computer use angles in ways that are difficult to see directly, but that rely on the fundamental rules of trigonometry to work properly. Any time angles appear in a problem, the use of trigonometry usually will not be far behind.

An excellent working knowledge of trigonometry is essential for practicing engineers. Many problems can be easily solved by applying the fundamental definitions of trigonometric functions. Figure 1 depicts a right triangle for which we will express the various trigonometric functions and relationships that are important to engineers.

Some of the most widely used trigonometric functions follow

$\text{sin}\left(\theta \right)=\frac{\text{opposite}\text{side}}{\text{hypotenuse}}=\frac{B}{C}$
$\text{cos}\left(\theta \right)=\frac{\text{adjacent}\text{side}}{\text{hypotenuse}}=\frac{A}{C}$
$\text{tan}\left(\theta \right)=\frac{\text{opposite}\text{side}}{\text{adjacent}\text{side}}=\frac{B}{A}$

The Pythagorean Theorem often plays a key role in applications involving trigonometry in engineering. It states that the square of the hypotenuse is equal to the sum of the squares of the adjacent side and of the opposite side. This theorem can be stated mathematically by means of the equation that follows. Here we make use of the symbols (A, B, and C) that designate associated lengths.

${A}^{2}+{B}^{2}={C}^{2}$

In the remainder of this module, we will make use of these formulas in addressing various applications.

## Flight path of an aircraft

The following is representative of the type of problem one is likely to encounter in the introductory Physics course as well as in courses in Mechanical Engineering. This represents an example of how trigonometry can be applied to determine the motion of an aircraft.

Assume that an airplane climbs at a constant angle of 3 0 from its departure point situated at sea level. It continues to climb at this angle until it reaches its cruise altitude. Suppose that its cruise altitude is 31,680 ft above sea level.

With the information stated above, we may sketch an illustration of the situation

Question 1: What is the distance traveled by the plane from its departure point to its cruise altitude?

The distance traveled by the plane is equal to the length of the hypotenuse of the right triangle depicted in Figure 2. Let us denote the distance measured in feet that the plane travels by the symbol C . We may apply the definition of the sine function to enable us to solve for the symbol C as follows.

are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Can someone give me problems that involes radical expressions like area,volume or motion of pendulum with solution