<< Chapter < Page Chapter >> Page >
Се дефинира поимот за интервал и се определуваат видови на интервали.


Поимот интервал се воведува со следната


Нека a , b R size 12{a,b in R} {} и нека a < b . size 12{a<b "." } {} Множеството од сите броеви x R size 12{x in R} {} кои ја задоволуваат релацијата a x b size 12{a<= x<= b} {} се нарекува интервал и се означува со [ a , b ] . size 12{ \[ a,b \] "." } {}

Интервалот [ a , b ] size 12{ \[ a,b \] } {} се нарекува затворен интервал или сегмент бидејќи ги содржи и неговите крајни вредности a size 12{a} {} и b size 12{b} {} .

Ако крајните вредности a size 12{a} {} и b size 12{b} {} не му припаѓаат на интервалот т.е.

a < x < b size 12{a<x<b} {} ,

тогаш тој се нарекува отворен интервал и се означува со ( a , b ) size 12{ \( a,`b \) } {} .

Постојат и полуотворени и полузатворени интервали.


a < x b size 12{a<x<= b} {}

е полуотворен од лево и полузатворен од десно и се означува со ( a , b ] size 12{ \( a,`b \] } {} , додека интервалот

a x < b size 12{a<= x<b} {}

е полузатворен од лево и полуотворен од десно и се означува со [ a , b ) size 12{ \[ a,`b \) } {} .

Сите погоре наведени интервали се ограничени.

Бројот b a size 12{b - a} {} се нарекува должина на интервалот .

Постојат и неогра­ничени интервали, а такви се следните интервали:

a x <+ size 12{a<= x"<+" infinity } {}


[ a , + ) size 12{ \[ a,`+ infinity \) } {}

кој ги содржи сите реални броеви поголеми или еднакви на бројот a size 12{a} {} и овој интервал е затворен од лево а отворен од десно.

Отворениот интервал кој ги содржи реалните броеви поголеми од бројот a size 12{a} {} се означува со

a < x <+ size 12{a<x"<+" infinity } {}


( a , + ) . size 12{ \( a,+ infinity \) "." } {}

Аналогно на горенаведените интервали, интервалот кој ги содржи сите рални броеви помали или еднакви од b size 12{b} {} се означува со

< x b size 12{ - infinity<x<= b} {}


( , b ] size 12{ \( - infinity ,b \] } {} ,

додека интервалот со стриктно помали броеви од b size 12{b} {} се означува со

< x < b size 12{ - infinity<x<b} {}


( , b ) size 12{ \( - infinity ,b \) } {} .

Множеството од сите реални броеви се претставува со

< x <+ size 12{ - infinity<x"<+" infinity } {} ,


( , + ) size 12{ \( - infinity `,`+ infinity \) } {}

и претставува отворен интервал и од лево и од десно и нему му кореспондираат сите точки од бројната права.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Воведни поими од математичка анализа. OpenStax CNX. Nov 01, 2007 Download for free at http://legacy.cnx.org/content/col10475/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Воведни поими од математичка анализа' conversation and receive update notifications?