<< Chapter < Page Chapter >> Page >

Our observations have already shown us that the temperature change is double for half as much water. We can repeat these observations for many different masses of water, and we also find that the temperature change is inversely proportional to the mass of the water. This means that the heat capacity C itself is proportional to the mass of the substance heated. (Look back at Equation 1 to convince yourself that this is true. For a fixed amount of heat, what happens to the temperature change and the heat capacity if we double the mass of water heated?) So now we rewrite Equation 1 with this new information:

q = m C s ΔT

Here, m is the mass of the material being heated, and the proportional constant is now called the “heat capacity per gram” or more commonly the “specific heat.” Experiments show that, for any particular material, C s is a relatively constant property of the material. (C s actually varies slowly with the temperature, so it is about constant unless we make very large temperature changes.)

This equation so far is not very helpful, though, because we do not know values for the heat q or for the specific heat C s . If we knew one, we would know the other from Equation 2, so somehow we have to devise an experiment to measure one or the other.

Here’s one way to do the experiment. Since heat is a form of energy and energy is the capacity to do work, we just need to measure how much work can be done for a specific amount of heat, e.g. for burning a specific amount of methane. This is tricky, but we’ve already seen that we can use the heat generated by a reaction to push a piston back in a cylinder. If we burn 1.0 g of methane, we can measure how much work is done on the piston by measuring how much force is generated and for what distance. From these measurements and the rules of physics, we find that burning 1.0 g of methane can produce a maximum amount of work equal to 55.65 kJ.

(A second way to do the experiment is to use work to increase the temperature of water and to measure how much work is required to increase the temperature of water by 1 °C. We’ll leave it as an exercise to devise a way to elevate temperature by doing work.)

What do the data tell us? If 55.65 kJ of work can be done by burning 1.0 g of methane, then burning 1.0 g of methane must produce 55.65 kJ of heat. This is q in Equation 2. But we have already measured that, for 1.0 kg of water, the temperature change is 13.3°C. This is ΔT in Equation 2, and m is 1000 g. From these data, we can directly calculate that, for water, C s = 4.184 J/g·°C. This is called the specific heat of water, or somewhat more loosely, the heat capacity of water. Pay attention to the units of this quantity, as they are unusual.

In similar ways, it is possible to find the specific heat or heat capacity of any material of interest. A set of specific heats for different substances is shown in [link] . This is very valuable for predicting temperature changes in different materials. For our purposes, it has an even greater value. We can use this to determine the energy change in a chemical reaction.

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Concept development studies in chemistry 2013. OpenStax CNX. Oct 07, 2013 Download for free at http://legacy.cnx.org/content/col11579/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2013' conversation and receive update notifications?

Ask