# 0.10 Lecture 11:sinusoidal steady-state (sss) or frequency response  (Page 3/5)

And

$\begin{array}{}\text{arg}\left(H\left(\mathrm{j\omega }\right)\right)=\text{arg}\left(K\right)+\text{arg}\left(j{\text{ωτ}}_{\mathrm{z1}}+1\right)+\text{arg}\left(j{\text{ωτ}}_{\mathrm{z2}}+1\right)+\text{.}\text{.}\text{.}+\text{arg}\left(j{\text{ωτ}}_{\text{zM}}+1\right)\\ \begin{array}{cc}\begin{array}{cc}\begin{array}{cc}\begin{array}{cc}& \end{array}& \end{array}& \end{array}& \end{array}-\text{arg}\left(j{\text{ωτ}}_{\mathrm{p1}}+1\right)-\text{arg}\left(j{\text{ωτ}}_{\mathrm{p2}}+1\right)-\text{.}\text{.}\text{.}-\text{arg}\left(j{\text{ωτ}}_{\text{pN}}+1\right)\end{array}$

4/ Logarithmic magnitude

Taking twenty times the logarithm of the magnitude yields

$\begin{array}{}\text{20}{\text{log}}_{\text{10}}\mid H\left(\mathrm{j\omega }\right)\mid =\text{20}{\text{log}}_{\text{10}}\mid K\mid +\text{20}{\text{log}}_{\text{10}}\mid j{\text{ωτ}}_{\mathrm{z1}}+1\mid +\text{20}{\text{log}}_{\text{10}}\mid j{\text{ωτ}}_{\mathrm{z2}}+1\mid +\text{.}\text{.}\text{.}+\text{20}{\text{log}}_{\text{10}}\mid j{\text{ωτ}}_{\text{zM}}+1\mid \\ \begin{array}{cc}\begin{array}{cc}\begin{array}{cc}\begin{array}{cc}& \end{array}& \end{array}& \end{array}& \end{array}-\text{20}{\text{log}}_{\text{10}}\mid j{\text{ωτ}}_{\mathrm{p1}}+1\mid -\text{20}{\text{log}}_{\text{10}}\mid j{\text{ωτ}}_{\mathrm{p2}}+1\mid -\text{.}\text{.}\text{.}-\text{20}{\text{log}}_{\text{10}}\mid j{\text{ωτ}}_{\text{pN}}+1\mid \end{array}$

Note than both the logarithmic magnitude and the angle are expressed as sums of terms of the form

$±{\text{20 log}}_{\text{10}}\mid j\text{ωτ}+1\mid \text{}\begin{array}{cc}& \end{array}\text{and}\begin{array}{cc}& \end{array}±\text{arg}\left(j\text{ωτ}+1\right)$

Therefore, to plot the frequency response we need to add terms of the above form.

5/ Decibels

It is common to plot frequency responses as Bode diagrams whose magnitude is expressed in decibels. The decibel, denoted by dB, is defined as ${\text{20 log}}_{\text{10}}\mid Η\mid$ . The following table gives decibel equivalents for a few quantities.

How many decibels correspond to |H| = 50? Express |H| =100/2. Then

${\text{20 log}}_{\text{10}}\left(\text{100/2}\right)={\text{20 log}}_{\text{10}}{\text{100 - 20log}}_{\text{10}}\text{2}\approx \text{40}\text{- 6}\text{=}\text{34}\text{dB}$

6/ Asymptotes

To plot the frequency response of a system with real poles and zeros, we need to plot terms of the form

$±{\text{20 log}}_{\text{10}}\mid 1+j\text{ωτ}\mid \text{}\begin{array}{cc}& \end{array}\text{and}\begin{array}{cc}& \end{array}\text{}±\text{arg}\left(1+j\text{ωτ}\right)$

The low and high frequency asymptotes are

7/ Corner frequency

At $\omega \text{=}{\omega }_{c}\text{= 1}/\tau$ , called the corner or cut-off frequency,

• the low- and high-frequency asymptotes intersect,
• the magnitude is

$±{\text{20 log}}_{\text{10}}\mid \text{1+j}\text{ωτ}\mid \text{=}±{\text{20 log}}_{\text{10}}\mid \text{1+j1}\mid \text{=}±{\text{20 log}}_{\text{10}}{2}^{\text{1/2}}\text{}±\text{3 dB}$

• the angle is

$±\text{arg}\left(\text{1+}j\text{ωτ}\right)\text{=}±\text{arg}\left(\text{1+}j\right)\text{=}±\pi /4$

Example — first-order lowpass system

First-order low pass systems arise in a large variety of physical contexts. For example,

For the parameters M = B = R = C = 1, the frequency responses for the two systems are

$H\left(\mathrm{j\omega }\right)=\frac{V\left(\mathrm{j\omega }\right)}{F\left(\mathrm{j\omega }\right)}=\frac{1}{\mathrm{j\omega }+1}\begin{array}{cc}& \end{array}\text{and}\begin{array}{cc}& \end{array}H\left(\mathrm{j\omega }\right)=\frac{{V}_{0}\left(\mathrm{j\omega }\right)}{{V}_{i}\left(\mathrm{j\omega }\right)}=\frac{1}{\mathrm{j\omega }+1}$

Magnitude

For

$H\left(\mathrm{j\omega }\right)=\frac{1}{\mathrm{j\omega }+1}$

the low-frequency asymptote has a slope of 0 and an intercept of 0 dB and the high-frequency asymptote has a slope of -20 dB/decade and an intercept of 0 dB at the corner frequency. The corner frequency is 1 rad/sec and the bandwidth is 1 rad/sec. The two asymptotes intersect at ω = 1 where ${\text{20 log}}_{\text{10}}\mid Η\left(\text{jω}\right)\mid \text{=}\text{-3}\text{dB}$

$H\left(\mathrm{j\omega }\right)=\frac{1}{\mathrm{j\omega }+1}$

the low- and high-frequency asymptotes of the angle of the frequency response are 0 and $-{\text{90}}^{0}$ (−π/2 radians), respectively. The angle is $-{\text{45}}^{0}$ at the corner frequency (1 rad/sec).

A line drawn from the low frequency asymptote a decade below the corner frequency to the high frequency asymptote a decade above the corner frequency approximates the angle of the frequency response.

Physical interpretation

With M = B = 1, the frequency response is

$H\left(\mathrm{j\omega }\right)=\frac{V\left(\mathrm{j\omega }\right)}{F\left(\mathrm{j\omega }\right)}=\frac{1}{\mathrm{j\omega }+1}$

At low frequencies, |H(jω)| → 1 and arg H(jω) → 0. The inertia of the mass is negligible, and the damping force dominates so that the external force is proportional to velocity.

At high frequencies, |H(jω)| → 1/ω and arg H(jω) → $-{\text{90}}^{0}$ . The inertia of the mass dominates so that the acceleration is proportional to external force and the velocity decreases as frequency increases.

With R = C = 1, the frequency response is

 $H\left(\mathrm{j\omega }\right)=\frac{{V}_{o}\left(\mathrm{j\omega }\right)}{{V}_{i}\left(\mathrm{j\omega }\right)}=\frac{1}{\mathrm{j\omega }+1}$

At low frequencies, |H(jω)| → 1 and arg H(jω) → 0. The impedance of the capacitance is large so that all the input voltage appears at the output.

At high frequencies, |H(jω)| → 1/ω and arg H(jω) → $-{\text{90}}^{0}$ . The impedance of the capacitance is small so that the current is determined by the resistance and the output voltage is determined by the impedance of the capacitance which decreases as frequency increases.

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers! By Wey Hey By Jessica Collett By CB Biern By Angela January By George Turner By OpenStax By Brooke Delaney By Vanessa Soledad By Anonymous User By Janet Forrester