<< Chapter < Page Chapter >> Page >
Boiling points of hydrides of groups iv to vii
Boiling Point (°C)
C H 4 -164
N H 3 -33
H 2 O 100
H F 20
Si H 4 -111.8
P H 3 -87.7
H 2 S -60.7
H Cl -85
Ge H 4 -88.5
As H 3 -55
H 2 Se -41.5
H Br -67
Sn H 4 -52
Sb H 3 -17.1
H 2 Te -2.2
H I -35

In tabular form, there are no obvious trends here, and therefore no obvious connection to the structure orbonding in the molecules. The data in the table are displayed in a suggestive form, however, in , the boiling point of each hydride is plotted according to which period (row) of the periodictable the main group element belongs. For example, the Period 2 hydrides ( C H 4 , N H 3 , H 2 O , and H F ) are grouped in a column to the left of the figure, followed by a column for the Period 3 hydrides( Si H 4 , P H 3 , H 2 S , H Cl ), etc.

Now a few trends are more apparent. First, the lowest boiling points in each period are associated with the GroupIV hydrides ( C H 4 , Si H 4 , Ge H 4 , Sn H 4 ), and the highest boiling points in each period belong to the Group VI hydrides ( H 2 O , H 2 S , H 2 Se , H 2 Te ). For this reason, the hydrides belonging to a single group have been connected in .

Boiling points of main group hydrides

Second, we notice that, with the exceptions of N H 3 , H 2 O , and H F , the boiling points of the hydrides alwaysincrease in a single group as we go down the periodic table: for example, in Group IV, the boiling points increase in the order C H 4 Si H 4 Ge H 4 Sn H 4 . Third, we can also say that the hydrides from Period 2 appear to have unusually high boiling points except for C H 4 , which as noted has the lowest boiling point of all.

We begin our analysis of these trends by assuming that there is a relationship between the boiling points of these compounds and the structure and bonding in their molecules.Recalling our kinetic molecular model of gases and liquids, we recognize that a primary difference between these two phases isthat the strength of the interaction between the molecules in the liquid is much greater than that in the gas, due to the proximityof the molecules in the liquid. In order for a molecule to leave the liquid phase and enter into the gas phase, it must possesssufficient energy to overcome the interactions it has with other molecules in the liquid. Also recalling the kinetic moleculardescription, we recognize that, on average, the energies of molecules increase with increasing temperature. We can concludefrom these two statements that a high boiling point implies that significant energy is required to overcome intermolecularinteractions. Conversely, a substance with a low boiling point must have weak intermolecular interactions, surmountable even at lowtemperature.

In light of these conclusions, we can now look at as directly (though qualitatively) revealing the comparative strengths of intermolecular interactions of the varioushydrides. For example, we can conclude that, amongst the hydrides considered here, the intermolecular interactions are greatestbetween H 2 O molecules and weakest between C H 4 molecules. We examine the three trends in this figure, described above, in light of thestrength of intermolecular forces.

First, the most dominant trend in the boiling points is that, within a single group, the boiling points of thehydrides increase as we move down the periodic table.This is true in all four groups in ; the only exceptions to this trend are N H 3 , H 2 O , and H F . We can conclude that, with notableexceptions, intermolecular interactions increase with increasing atomic number of the central atom in the molecule. This is truewhether the molecules of the group considered have dipole moments (as in Groups V, VI, and VII) or not (as in Group IV). We can inferthat the large intermolecular attractions for molecules with large central atoms arises from the large number of charged particles inthese molecules.

This type of interaction arises from forces referred to as London forces or dispersion forces . These forcesare believed to arise from the instantaneous interactions of the charged particles from one molecule with the charged particles inan adjacent molecule. Although these molecules may not be polar individually, the nuclei in one molecule may attract the electronsin a second molecule, thus inducing an instantaneous dipole in the second molecule. In turn, the second molecule induces a dipole inthe first. Thus, two non-polar molecules can interact as if there were dipole-dipole attractions between them, with positive andnegative charges interacting and attracting. The tendency of a molecule to have an induced dipole is called the polarizability of the molecule. The more charged particles there are in a molecule, the more polarizable a molecule is and the greater the attractions arising from dispersion forces will be.

Second, we note that, without exception, the Group IV hydrides must have the weakest intermolecular interactionsin each period. As noted above, these are the only hydrides that have no dipole moment. Consequently, in general, molecules withoutdipole moments have weaker interactions than molecules which are polar. We must qualify this carefully, however, by noting that thenonpolar Sn H 4 has a higher boiling point than the polar P H 3 and H Cl . We can conclude from these comparisons that the increased polarizability of molecules with heavier atoms can offset the lackof a molecular dipole.

Third, and most importantly, we note that the intermolecular attractions involving N H 3 , H 2 O , and H F must be uniquely and unexpectedly large, since their boiling points aremarkedly out of line with those of the rest of their groups. The common feature of these molecules is that they contain small atomicnumber atoms which are strongly electronegative, which have lone pairs, and which are bonded to hydrogen atoms. Molecules withoutthese features do not have unexpectedly high boiling points. We can deduce from these observations that the hydrogen atoms in eachmolecule are unusually strongly attracted to the lone pair electrons on the strongly electronegative atoms with the sameproperties in other molecules. This intermolecular attraction of a hydrogen atom to an electronegative atom is referred to as hydrogen bonding . It is clear from our boiling point data that hydrogen bonding interactions are much stronger than eitherdispersion forces or dipole-dipole attractions.

Review and discussion questions

Explain the significance to the developmentof the kinetic molecular model of the observation that the ideal gas law works well only at low pressure.

Got questions? Get instant answers now!

Explain the significance to the development of the kinetic molecular model of the observation that the pressurepredicted by the ideal gas law is independent of the type of gas.

Got questions? Get instant answers now!

Sketch the value of P V n R T as a function of density for two gases, one with strong intermolecular attractionsand one with weak intermolecular attractions but strong repulsions.

Got questions? Get instant answers now!

Give a brief molecular explanation for the observation that the pressure of a gas at fixed temperatureincreases proportionally with the density of the gas.

Got questions? Get instant answers now!

Give a brief molecular explanation for the observation that the pressure of a gas confined to a fixed volumeincreases proportionally with the temperature of the gas.

Got questions? Get instant answers now!

Give a brief molecular explanation for the observation that the volume of a balloon increases roughlyproportionally with the temperature of the gas inside the balloon.

Got questions? Get instant answers now!

Explain why there is a correlation between high boiling point and strong deviation from the Ideal Gas Law .

Got questions? Get instant answers now!

Referring to , explain why the hydride of the Group 4 element always has the lowest boiling pointin each period.

Got questions? Get instant answers now!

Explain why the Period 2 hydrides except C H 4 all have high boiling points, and explain why C H 4 is an exception.

Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, General chemistry ii. OpenStax CNX. Mar 25, 2005 Download for free at http://cnx.org/content/col10262/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'General chemistry ii' conversation and receive update notifications?

Ask