<< Chapter < Page Chapter >> Page >

z = ax + by size 12{z= ital "ax"+ ital "by"} {}

диференцијалната равенка се сведува на равенка во која променливите се раздвојуваат и како таква се решава.

Пример 5.

Да најде општото решение на диференцијалната равенка

y ' = 2 ( y + 2 ) 2 ( x + y 1 ) 2 . size 12{ { {y}} sup { ' }= { {2 \( y+2 \) rSup { size 8{2} } } over { \( x+y - 1 \) rSup { size 8{2} } } } "." } {}

РЕШЕНИЕ.

Со смената

x = u + α , dx = du y = v + β , dy = dv alignl { stack { size 12{x=u+α,~ ital "dx"= ital "du"} {} #size 12{y=v+β,~ ital "dy"= ital "dv"~} {} } } {} dy dx = y ' = v ' = dv du size 12{ drarrow ~ { { ital "dy"} over { ital "dx"} } = { {y}} sup { ' }= { {v}} sup { ' }= { { ital "dv"} over { ital "du"} } } {}

диференцијалната равенка се сведува на

v ' = 2 ( v + β + 2 ) 2 ( u + α + v + β 1 ) 2 . size 12{ { {v}} sup { ' }= { {2 \( v+β+2 \) rSup { size 8{2} } } over { \( u+α+v+β - 1 \) rSup { size 8{2} } } } "." } {}

За да биде оваа диференцијална равенка хомогена, потребно е да се реши системот равенки

β + 2 = 0 α + β 1 = 0 Δ 0 β = 2, α = 3 { size 12{alignl { stack { left lbrace β+2=0 {} #right none left lbrace α+β - 1=0 {} # right no } } lbrace ~ drarrow Δ<>0` drarrow ~β= - 2,`α=3} {} ,

а диференцијалната равенка со овие вредности е

v ' = 2v 2 ( u + v ) 2 , size 12{ { {v}} sup { ' }= { {2v rSup { size 8{2} } } over { \( u+v \) rSup { size 8{2} } } } ,} {}

односно таа е хомогена равенка

v ' = 2 v u 2 1 + v u 2 size 12{ { {v}} sup { ' }= { {2 left ( { {v} over {u} } right ) rSup { size 8{2} } } over { left (1+ { {u} over {v} } right ) rSup { size 8{2} } } } } {}

која со смената v = zu size 12{v= ital "zu"} {} и v ' = z ' u + z size 12{ { {v}} sup { ' }= { {z}} sup { ' }u+z} {} се сведува на равенка во која променливите се раздвојуваат

( 1 + z ) 2 z + z 3 dz = du u size 12{ - { { \( 1+z \) rSup { size 8{2} } } over {z+z rSup { size 8{3} } } } ital "dz"= { { ital "du"} over {u} } } {} .

Решението на оваа равенка е

ln z 2 arctg z = ln Cu size 12{ - "ln" \lline z \lline - 2"arctg"`z="ln" \lline ital "Cu" \lline } {}

кое по вараќање на променливте од последната замена z = v u size 12{z= { {v} over {u} } } {} има облик

arctg v u = 1 2 ln Cv size 12{"arctg"` { {v} over {u} } = - { {1} over {2} } "ln" \lline ital "Cv" \lline } {} или vC = e 2 arctg v u size 12{ ital "vC"=e rSup { size 8{ - 2"arctg"` { {v} over {u} } } } } {}

а по враќање на првобитните променливи од смената x = u + 3, y = v 2 size 12{x=u+3,~y=v - 2} {} , се добива општото решение на равенката кое гласи

( y + 2 ) C = e 2 arctg y + 2 x 3 size 12{ \( y+2 \) C=e rSup { size 8{ - 2"arctg"` { {y+2} over {x - 3} } } } } {} . ◄

Пример 6.

Да најде општото решение на диференцијалната равенка

y ' = 2x + y 1 4x + 2y + 5 . size 12{ { {y}} sup { ' }= { {2x+y - 1} over {4x+2y+5} } "." } {}

РЕШЕНИЕ.

Оваа диференцијална равенка се сведува на хомогена равенка, но по воведување на смената детерминантата на системот е = 0. Равенката може да се запише во обликот

y ' = 2x + y 1 4x + 2y + 5 = ( 2x + y ) 1 2 ( 2x + y ) + 5 size 12{ { {y}} sup { ' }= { {2x+y - 1} over {4x+2y+5} } = { { \( 2x+y \) - 1} over {2 \( 2x+y \) +5} } } {}

и со смената

z = 2x + y y = z 2x y ' = z ' 2 size 12{z=2x+y~ drarrow ~y=z - 2x~ drarrow ~ { {y}} sup { ' }= { {z}} sup { ' } - 2} {}

таа се сведува на равенка во која променливите се раздвојуваат

z ' = 5z + 9 2z + 5 . size 12{ { {z}} sup { ' }= { {5z+9} over {2z+5} } "." } {}

Општото решение на оваа равенка е

2z + 5 5z + 9 dz = dx + C size 12{ Int { { {2z+5} over {5z+9} } ital "dz"} = Int { ital "dx"+C} } {}

и по интегрирање тоа гласи

2 5 z + 7 25 ln z + 9 5 = x + C size 12{ { {2} over {5} } z+ { {7} over {"25"} } "ln" \lline z+ { {9} over {5} } \lline =x+C} {}

и по враќање на старата променлива од смената z = 2x + y size 12{z=2x+y} {} , општото решение е

2 5 ( 2x + y ) + 7 25 ln 10 x + 5y + 9 5 = x + C . size 12{ { {2} over {5} } \( 2x+y \) + { {7} over {"25"} } "ln" lline { {"10"x+5y+9} over {5} } rline =x+C "." } {}

3. линерана диференцијална равенка

Општиот облик на линерна диференцијална равенка од прв ред е

dy dx + P ( x ) y = Q ( x ) size 12{ { { ital "dy"} over { ital "dx"} } +P \( x \) y=Q \( x \) } {} ,

каде P ( x ) , Q ( x ) size 12{P \( x \) ,``Q \( x \) } {} се дадени непрекинати функции од променливата x size 12{x} {} .

Равенката од обликот

dy dx + P ( x ) y = 0 size 12{ { { ital "dy"} over { ital "dx"} } +P \( x \) y=0} {}

се нарекува хомогена линеарна диференцијална равенка од прв ред. Во оваа равенка променливите се раздвојуваат и нејзиното општо решение е

dy y = P ( x ) dx + ln C size 12{ Int { { { ital "dy"} over {y} } } = - Int {P \( x \) ital "dx"} +"ln"C} {}

или

y = Ce P ( x ) dx size 12{y= ital "Ce" rSup { size 8{ - Int {P \( x \) ital "dx"} } } } {} .

Ова решение на хомогената линеарна равенка може да се искористи за определување на општото решение на нехомогената линеарна равенка со користење на методот на варијација на константи, со кој константата C се третира како непрекината и диференцијабилна функција C ( x ) size 12{C \( x \) } {} . Затоа решението на хомогената линеарна равенка сега ќе биде

y = C ( x ) e P ( x ) dx size 12{y=C \( x \) e rSup { size 8{ - Int {P \( x \) ital "dx"} } } } {} ,

а неговиот извод е

y ' = e P ( x ) dx C ' ( x ) P ( x ) C ( x ) . size 12{ { {y}} sup { ' }=e rSup { size 8{ - Int {P \( x \) ital "dx"} } } left [ { {C}} sup { ' } \( x \) - P \( x \) C \( x \) right ] "." } {}

Заменувајќи го ова решение и неговиот извод во нехомогената линерна равенка се добива

e P ( x ) dx C ' ( x ) P ( x ) C ( x ) + P ( x ) C ( x ) e P ( x ) dx = Q ( x ) size 12{e rSup { size 8{ - Int {P \( x \) ital "dx"} } } left [ { {C}} sup { ' } \( x \) - P \( x \) C \( x \) right ]+P \( x \) C \( x \) e rSup { size 8{ - Int {P \( x \) ital "dx"} } } =Q \( x \) } {}

или по средување

C ' ( x ) = Q ( x ) e P ( x ) dx size 12{~ { {C}} sup { ' } \( x \) =Q \( x \) e rSup { size 8{ Int {P \( x \) ital "dx"} } } } {}

од каде следува дека

C ( x ) = Q ( x ) e P ( x ) dx dx + C , C = const . size 12{C \( x \) = Int {Q \( x \) e rSup { size 8{ Int {P \( x \) ital "dx"} } } } ital "dx"+C,~C= ital "const" "." } {}

Со замена на оваа вредност за C ( x ) size 12{C \( x \) } {} во решението се добива

y = e P ( x ) dx C + Q ( x ) e P ( x ) dx dx size 12{y=e rSup { size 8{ - Int {P \( x \) ital "dx"} } } left [C+ Int {Q \( x \) } e rSup { size 8{ Int {P \( x \) ital "dx"} } } ital "dx" right ]} {}

што претставува општо решение на линеарната диференцијална равенка од прв ред.

Пример 7.

Да се најде партикуларното решение на диференцијалната равенка

( 1 + x 2 ) y ' 2 xy = ( 1 + x 2 ) 2 size 12{ \( 1+x rSup { size 8{2} } \) { {y}} sup { ' } - 2 ital "xy"= \( 1+x rSup { size 8{2} } \) rSup { size 8{2} } } {} кое за x = 1, y = 2 size 12{x=1,`y=2} {} .

РЕШЕНИЕ.

Диференцијалната равенка се запишува како

y ' 2x 1 + x 2 y = 1 + x 2 size 12{ { {y}} sup { ' } - { {2x} over {1+x rSup { size 8{2} } } } y=1+x rSup { size 8{2} } } {} ,

и таа е линеарна при што P ( x ) = 2x 1 + x 2 , Q ( x ) = 1 + x 2 . size 12{P \( x \) = - { {2x} over {1+x rSup { size 8{2} } } } ,~Q \( x \) =1+x rSup { size 8{2} } "." } {}

Применувајќи ја формулата за општо решение на линеарната диференцијална равенка од прв ред се добива

y = e 2x 1 + x 2 dx C + ( 1 + x 2 ) e 2x 1 + x 2 dx dx size 12{y=e rSup { size 8{ Int { { {2x} over {1+x rSup { size 6{2} } } } } ital "dx"} } left [C+ \( 1+x rSup {2} size 12{ \) e rSup { - Int { { {2x} over {1+x rSup { size 6{2} } } } } ital "dx"} } size 12{ ital "dx"} right ]} {} ,

или по решавање на интегралите, општото решение е

y = ( 1 + x 2 ) ( C + x ) size 12{y= \( 1+x rSup { size 8{2} } \) \( C+x \) } {} .

Со замена на почетните услови x = 1, y = 2 size 12{x=1,`y=2} {} во општото решение

2 = ( 1 + 1 ) ( C + 1 ) C = 0 size 12{2= \( 1+1 \) \( C+1 \) ~ drarrow ~C=0} {}

се пресмета вредноста на интегралната константа и затоа бараното партикуларно решение е

y = ( 1 + x 2 ) x size 12{y= \( 1+x rSup { size 8{2} } \) x} {} . ◄

Пример 8.

Да најде општото решение на диференцијалната равенка

y ' = y 2y ln y + y x size 12{ { {y}} sup { ' }= { {y} over {2y"ln"y+y - x} } } {} .

РЕШЕНИЕ.

Ова е пример на диференцијална равенка која не е линеарна по y size 12{y} {} , а е линерна по променливата x size 12{x} {} . Користејќи ја релацијата

y ' = dy dx = 1 dx dy = 1 x ' size 12{ { {y}} sup { ' }= { { ital "dy"} over { ital "dx"} } = { {1} over { { { ital "dx"} over { ital "dy"} } } } = { {1} over { { {x}} sup { ' }} } } {} ,

диференцијалната равенка се запишува во облик

1 x ' = y 2y ln y + y x size 12{ { {1} over { { {x}} sup { ' }} } = { {y} over {2y"ln"y+y - x} } } {}

или

x ' = 2y ln y + y x y size 12{ { {x}} sup { ' }= { {2y"ln"y+y - x} over {y} } } {} ,

од каде се гледа дека таа е линеарна по променливата x size 12{x} {} и се запишува во вообичаениот облик како

x ' + x y = 2y ln y + 1 size 12{ { {x}} sup { ' }+ { {x} over {y} } =2y"ln"y+1} {} .

Според тоа изразот за општо решение на оваа диференцијална равенка која е линеарна по променливата x size 12{x} {} ќе гласи

x = e dy y ( 2y ln y + 1 ) e dy y dy + C size 12{x=e rSup { size 8{ - Int { { { ital "dy"} over {y} } } } } left [ Int { \( 2y"ln"y+1 \) e rSup { size 8{ Int { { { ital "dy"} over {y} } } } } ital "dy"+C} right ]} {} ,

а по решавање на интегралите се добива

x = 1 y y 2 ( ln y 1 2 ) + y 2 2 + C size 12{x= { {1} over {y} } left [y rSup { size 8{2} } \( "ln"y - { {1} over {2} } \) + { {y rSup { size 8{2} } } over {2} } +C right ]} {}

и по средување на овој израз, општото решение е

x = C y + y ln y size 12{x= { {C} over {y} } +y"ln"y} {} . ◄

4. бернулиева диференцијална равенка

Диференцијалната равенка од облик

y ' + P ( x ) y = Q ( x ) y n size 12{ { {y}} sup { ' }+P \( x \) y=Q \( x \) y rSup { size 8{n} } } {}

се нарекува Бернулиева (Bernoulli) диференцијална равенка. Со погодна смена на функцијата, оваа равенка може да се сведе на линеарна диференцијална равенка. За таа цел Бернулиевата диференцијална равенка се дели со y n size 12{y rSup { size 8{n} } } {}

y ' + P ( x ) y = Q ( x ) y n /: y n size 12{ { {y}} sup { ' }+P \( x \) y=Q \( x \) y rSup { size 8{n} } "/:"y rSup { size 8{n} } } {}

при што се добива

y n y ' + P ( x ) y 1 n = Q ( x ) size 12{y rSup { size 8{ - n} } { {y}} sup { ' }+P \( x \) y rSup { size 8{1 - n} } =Q \( x \) } {} .

Со смената

t = y 1 n , t ' = ( 1 n ) y n y ' size 12{t=y rSup { size 8{1 - n} } ,~ { {t}} sup { ' }= \( 1 - n \) y rSup { size 8{ - n} } { {y}} sup { ' }} {}

Бернулиевата се сведува на линеарна равенка по новата променлива t size 12{t} {}

1 1 n t ' + P ( x ) t = Q ( x ) size 12{ { {1} over {1 - n} } { {t}} sup { ' }+P \( x \) t=Q \( x \) } {}

и за нејзино решавање се применува постапката за решавање на линерна дифернцијална равенка и на крај потребно е да се вратиме на старата променлива.

Пример 9.

Да најде општото решение на диференцијалната равенка

y ' y tg x + y 2 cos x = 0 size 12{ { {y}} sup { ' } - y`"tg"`x+y rSup { size 8{2} } "cos"x=0} {} .

РЕШЕНИЕ.

Дадената равенка е Бернулиева диференцијална равенка

y ' y tg x = y 2 cos x size 12{ { {y}} sup { ' } - y`"tg"`x= - y rSup { size 8{2} } "cos"x} {}

која по делење со y 2 size 12{y rSup { size 8{2} } } {} ја дава равенката

y ' y 2 tg x y = cos x size 12{ { { { {y}} sup { ' }} over {y rSup { size 8{2} } } } - { {"tg"`x} over {y} } = - "cos"x} {}

и која преку смената

t = 1 y , t ' = y ' y 2 size 12{t= { {1} over {y} } ,~ { {t}} sup { ' }= - { { { {y}} sup { ' }} over {y rSup { size 8{2} } } } } {}

се сведува на линеарна диференцијална равенка

t ' t tg x = cos x size 12{ - { {t}} sup { ' } - t`"tg"`x= - "cos"x} {} ,

односно

t ' + t tg x = cos x size 12{ { {t}} sup { ' }+t`"tg"`x="cos"x} {}

чие што решение е

t = e tgxdx cos x e tgxdx dx + C size 12{t=e rSup { size 8{ - Int { ital "tgxdx"} } } left [ Int {"cos"x`e rSup { size 8{ Int { ital "tgxdx"} } } } ital "dx"+C right ]} {} .

Решавајќи ги интегралите од десната страна, се добива дека

t = ( x + C ) cos x size 12{t= \( x+C \) "cos"x} {}

и по враќање на старата променлива од смената t = 1 y size 12{t= { {1} over {y} } } {} , општото решение на бараната Бернулиева равенка е

y = 1 ( x + C ) cos x size 12{y= { {1} over { \( x+C \) "cos"x} } } {} . ◄

Пример 10.

Да се најде општото решение на Бернулиевата диференцијална равенка

xy ( xdy + ydx ) = 4x 3 dx size 12{ ital "xy" \( ital "xdy"+ ital "ydx" \) =4x rSup { size 8{3} } ital "dx"} {} .

РЕШЕНИЕ.

Ако во диференцијалната равенка

xy ( xdy + ydx ) = 4x 3 dx size 12{ ital "xy" \( ital "xdy"+ ital "ydx" \) =4x rSup { size 8{3} } ital "dx"} {}

се ослободиме од заградата (множиме) и потоа поделиме со dx size 12{ ital "dx"} {} , се добива

x 2 y dy dx + xy 2 = 4x 3 size 12{x rSup { size 8{2} } y { { ital "dy"} over { ital "dx"} } + ital "xy" rSup { size 8{2} } =4x rSup { size 8{3} } } {} .

Делејќи ја последната равенка со коефициентот x 2 y size 12{x rSup { size 8{2} } y} {} кој е пред изводот

x 2 y dy dx + xy 2 = 4x 3 /: x 2 y size 12{x rSup { size 8{2} } y { { ital "dy"} over { ital "dx"} } + ital "xy" rSup { size 8{2} } =4x rSup { size 8{3} } "/:"x rSup { size 8{2} } y} {}

се добива стандардниот облик на Бернулиева диференцијална равенка

y ' + y x = 4x y size 12{ { {y}} sup { ' }+ { {y} over {x} } = { {4x} over {y} } } {} .

Во оваа равенка степенот n = 1 size 12{n= - 1} {} и затоа равенката ја делиме со y 1 size 12{y rSup { size 8{ - 1} } } {} (множиме со y size 12{y} {} ) при што се добива

y y ' + y 2 x = 4x size 12{y { {y}} sup { ' }+ { {y rSup { size 8{2} } } over {x} } =4x} {}

и со смената t = y 2 t ' = 2y y ' size 12{t=y rSup { size 8{2} } ~ drarrow ~ { {t}} sup { ' }=2y { {y}} sup { ' }} {} , таа се сведува на линеарна диференцијална равенка

t ' + 2 x t = 8x size 12{ { {t}} sup { ' }+ { {2} over {x} } t=8x} {}

која има решение

t = e 2 x dx 8 xe 2 x dx dx + C size 12{t=e rSup { size 8{ - Int { { {2} over {x} } } ital "dx"} } left [ Int {8 ital "xe" rSup { size 8{ Int { { {2} over {x} } } ital "dx"} } ital "dx"} +C right ]} {} ,

односно

t = 1 x 2 ( 2x 4 + C ) size 12{t= { {1} over {x rSup { size 8{2} } } } \( 2x rSup { size 8{4} } +C \) } {} .

Со враќање на старата променлива од смената t = y 2 size 12{t=y rSup { size 8{2} } } {} , се добива општото решение

y 2 x 2 = 2x 4 + C . size 12{y rSup { size 8{2} } x rSup { size 8{2} } =2x rSup { size 8{4} } +C "." } {}

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Диференцијални равенки. OpenStax CNX. Jun 04, 2012 Download for free at http://cnx.org/content/col11414/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Диференцијални равенки' conversation and receive update notifications?

Ask