The following plot shows the locus of natural frequencies as rg increases.
Both natural frequencies lie along the positive, real λ-axis. When rg = 0,
= 1. As rg increases, one natural frequency decreases toward λ = 0 and the other natural frequency increases. What is the physical significance of this pattern?
Note that the product of the two natural frequencies is 1,
Therefore,
and the form of the homogeneous solution is
The two terms of the homogeneous solution are shown below.
Thus, the homogeneous solution consists of a linear combination of decaying and growing geometric functions whose rates of decrease and increase are the same. Increasing the quantity rg increases the magnitude of the rate of change of voltage.
2/ Particular solution
Next we find a particular solution to the difference equation
for n>0 and
where z does not equal one of the natural frequencies. We assume that
and we solve for Y . Substitution for both x[n] and y[n]in the difference equation yields, after factoring,
After dividing both sides of the equation by
we can solve for Y which has the form
where
3/ System function
is called the system function
is a rational function in z that has poles and zeros
has poles that are the natural frequencies of the system
is a skeleton of the difference equation
characterizes the relation between x[n] and y[n]
a/ Example—reconstruction of difference equation from
Suppose
what is the difference equation that relates y[n] to x[n]? Crossmultiply the equation and multiply both sides by
to obtain
which yields
from which we can obtain the difference equation
y[n+1] + y[n]= x[n+1]
b/ Pole-zero diagram
characterizes the difference equation and
is characterized by K + L + 1 numbers: K poles, L zeros, and one gain constant. Except for the gain constant,
is characterized by a pole-zero diagram which is a plot of the locations of poles and zeros in the complex-z plane.
4/ Total solution
The general solution is
and
y[n] = 0 for n<0.
The general solution can be written compactly as follows
5/ Initial conditions
To completely determine the total solution we need to determine the K coefficients {
}. These are determined from K initial conditions which must be specified. These conditions result in a set of K algebraic equations that need to be solved to obtain the initial conditions so that the total solution can be specified. We shall find another, and simpler, method to determine the total solution later.
Example — discretized CT system
We have previously considered the discretized approximation to a lowpass filter.
The equilibrium equation is
We know that the unit step response of this network starting from initial rest is
We showed that a discretized approximation to this system yields the difference equation
where α = T/(RC). We will determine the solution by finding the homogeneous and particular solution. But all the information we need is contained in the system function which we can obtain by substituting
and
into the difference equation to obtain
so that
The natural frequency is
so that the solution has the form
where we have made use of the fact that
. Since
(1) = 1,
Finally, the initial condition,
, implies that A = −1 so that the solution is
which is the same result we obtained earlier by solving the difference equation iteratively.
We compare the step response of the CT system with the DT approximation
and
The solutions are shown below for RC = 1 and T/(RC) = 0.1.
XI. CONCLUSIONS
Systems are typically described by an arrangement of subsystems each of which is defined by a functional relation. Systems are classified according to such properties as: memory, causality, stability, linearity, and time-invariance. Linear, time-invariant systems (LTI) are special systems for which powerful mathematical methods of description are available.
Logic for an analysis method for LTI systems
H(s) characterizes system
compute H(s) efficiently.
In steady state, response to
is
Represent arbitrary x(t) as superpositions of
on s.
Compute response y(t) by superposing
on s.
1/ Structural versus functional descriptions
Just as with CT systems, DT systems can be described either structurally, with a block diagram or a network diagram, or functionally by a system function.
characterizes system
2/ Steady-state response to zn is particularly simple
Since the steady-state response to a complex geometric (exponential) is so simple, it is desirable to represent arbitrary DT functions as sums (integrals) of building-block complex geometric (exponential) functions chosen so that steady-state dominates. The steady-state response to each complex geometric (exponential) is readily computed. For a DT LTI system, the response to an arbitrary input can be computed by superposition.
Questions & Answers
where we get a research paper on Nano chemistry....?
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest.
Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.?
How this robot is carried to required site of body cell.?
what will be the carrier material and how can be detected that correct delivery of drug is done
Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?