<< Chapter < Page Chapter >> Page >

Introduction

The Scale- Invariant Feature Transform is an algorithm in computer vision to detect and describe points of interest in an image.

Approach

According to Prof. Dowe’s paper on Distinctive Image Features from Scale-Invariant Keypoints(2004), there are four stages to SIFT:

  1. “Scale-space extrema detection”- Searches the entire image for candidate interest points
  2. “Keypoint localization”- Calculate the location and scale for each candidate, remove candidates that are not stable
  3. “Orientation assignment”- Assign each key point with one or more orientations that are calculated based on the gradient direction at that key point location in the image
  4. “Keypoint descriptor”- For each key point, calculate the gradient in its surrounding area. This allows the transform to be distortion resistant. The above approach “transforms image data into scale-invariant coordinates relative to local features”.

Our project seeks to achieve scale, rotation and translation resistance. However due to time-constraint, we did not implement stage 4 “Keypoint descriptor” of SIFT.

Implementation

Stage 1

Apply Gaussian filters of different scales to the image. By using different scales the Gaussian filters would have different variances. Due to the inherent properties of Gaussian filters, this would “smooth” out the images, removing finer details of the image. At different scales, the details of the image that are insignificant compared to the standard deviation of the Gaussian filter applied would be removed. The Gaussians are generated using the following formula:

Gaussian Generation.

Then the image, represented as an array of digits, is convolved with the Gaussian.

Gaussian.

L(x,y,sigma) is the value of the resulting image at location (x,y) under the Gaussian filter with standard deviation sigma. I stands for the original image.

We applied Gaussians with scale 0, 1, and 2 to the image. At scale 0, we are essentially preserving the original image, at scales 1 and 2 we are “smoothing out” the image to an increasing extend. We have 3 octaves of resulting images, each octave consists of images resulting from repeated applying the gaussian filter of the same scale to the original image. After each octave, the image is down-sampled by two.

Code

A dog sitting on a couch.

Stage 2

Now we have the image smoothed to different extends, with variant amount of fine detailed preserved in the resulting images. Within each octave, we use Difference of Gaussian, which is basically subtracting neighboring images from each other. Difference of Gaussian is proven to be a close approximation of scale-normalized Laplacian of Gaussian, which is shown to "produce the most stable image features compared to a range of other possible image functions, such as the gradient, Hessian, or Harris corner function”. Moreover, Difference of Gaussian is efficient to compute since it’s just subtracting images.

Code

A dog sitting on a couch.

Then for each pixel in a resulting image, we compare it to its eight neighboring pixels in the same image and nine neighboring pixels in the images processed by adjacent scales. It’s selected if it’s greater or smaller than all its neighbors. The result is a candidate key point.

Code

A dog sitting on a couch.

Stage 3

To calculate the magnitude and orientation of each key point, we look at all it’s neighboring pixels in the image that is processed with the same scale.

A dog sitting on a couch.

m(x,y) stands for the gradient magnitude of the point and theta(x,y) stands for the orientation of the point.

Code

A dog sitting on a couch.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, A comparison of object recognition using the hough transform and the properties of moment of inertia. OpenStax CNX. Dec 16, 2014 Download for free at http://legacy.cnx.org/content/col11727/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'A comparison of object recognition using the hough transform and the properties of moment of inertia' conversation and receive update notifications?

Ask