<< Chapter < Page Chapter >> Page >
Noise is described in terms of its power spectral density

Types of noise:

  • Thermal resistor noise: due to thermal agitation. Statistical fluctuations. Always random, erratic and unpredictable.
  • Shot noise: fluctuations in emission of electrons or crossing of junctions.
  • Additive channel noise: random disturbances added in the channel.
  • Multiplicative noise: created by non linear devices like diodes, mixers, power amplifiers.

Terminology:

  • Noise is a Random variable best described by statistics like mean, variance, pdf etc.
  • Stationary process: always independent of time of measurement - same statistics any time
  • Ensemble statistics: measured at the same time on an ensemble (group) of sources
  • Ensemble statistics may be different from statistics of any member of group measured over time.
  • Ergodic: If ensemble and time statistics are same. ergodic is always stationary but Stationary is not always ergodic.
  • Noise from natural phenomenon Gaussian, ergodic&stationary.
  • Nonlinear sources may not give Gaussian pdf e.g. rectifier. 

Mathematical characterization:

Frequency domain description can be derived for periodic and pulse-like aperiodic phenomena.

  • Noise is not repetitive and infinite in time. So not a periodic or aperiodic pulse type signal.
  • As an approximation take a sample of noise of interest from -T/2 to T/2 consider it repetitive.
  • Purely random so safely assume no DC exists. Now Fourier description applicable.

n T ( s ) t = k = 1 a k cos 2πkΔ ft + b k sin 2πkΔ ft = k = 1 c k cos 2πkΔ ft + θ k size 12{n rSub { size 8{T} } rSup { size 8{ \( s \) } } left (t right )= Sum cSub { size 8{k=1} } cSup { size 8{ infinity } } { left (a rSub { size 8{k} } "cos"2πkΔital "ft"+b rSub { size 8{k} } "sin"2πkΔital "ft" right )= Sum cSub { size 8{k=1} } cSup { size 8{ infinity } } {c rSub { size 8{k} } "cos" left (2πkΔital "ft"+θrSub { size 8{k} } right )} } } {}

Also,

c k 2 = a k 2 + b k 2 size 12{c rSub { size 8{k} } rSup { size 8{2} } =a rSub { size 8{k} } rSup { size 8{2} } +b rSub { size 8{k} } rSup { size 8{2} } } {}  and θ k = tan 1 b k a k size 12{θrSub { size 8{k} } = - "tan" rSup { size 8{ - 1} } { {b rSub { size 8{k} } } over {a rSub { size 8{k} } } } } {}

  • Two sided power spectrum and mean power spectral density may be derived

Power associated with each spectral term is

c k 2 2 = a k 2 2 + b k 2 2 size 12{ { {c rSub { size 8{k} } rSup { size 8{2} } } over {2} } = { {a rSub { size 8{k} } rSup { size 8{2} } } over {2} } + { {b rSub { size 8{k} } rSup { size 8{2} } } over {2} } } {}

The power spectral density at k∆f is

G n kΔf G n kΔf c k 2 4Δf = a k 2 + b k 2 4Δf size 12{G rSub { size 8{n} } left (kΔf right ) equiv G rSub { size 8{n} } left ( - kΔf right ) equiv { {c rSub { size 8{k} } rSup { size 8{2} } } over {4Δf} } = { {a rSub { size 8{k} } rSup { size 8{2} } +b rSub { size 8{k} } rSup { size 8{2} } } over {4Δf} } } {}

And total power in∆f at k∆f is

P k = 2G n kΔf Δf size 12{P rSub { size 8{k} } =2G rSub { size 8{n} } left (kΔf right )Δf} {}

Half of this power is associated with k∆f and other half with -k∆f

  • The power spectrum above is deterministic in the sense that it has been derived for a specific waveform, and hence the a,b,c values are specific calculable values. In the general case we can treat these as random variables, replace them by the ensemble average values.
  • Let T tend to infinity - and∆f tend to 0. then the actual noise waveform results.
n t = lim Δf 0 k = 1 a k cos 2πkΔ ft + b k sin 2πkΔ ft = lim Δf 0 k = 1 c k cos 2πkΔ ft + θ k size 12{n left (t right )= {"lim"} cSub { size 8{Δf rightarrow 0} } Sum cSub { size 8{k=1} } cSup { size 8{ infinity } } { left (a rSub { size 8{k} } "cos"2πkΔital "ft"+b rSub { size 8{k} } "sin"2πkΔital "ft" right )= {"lim"} cSub { size 8{Δf rightarrow 0} } Sum cSub { size 8{k=1} } cSup { size 8{ infinity } } {c rSub { size 8{k} } "cos" left (2πkΔital "ft"+θrSub { size 8{k} } right )} } } {}
  • Power contribution from coefficients is now replaced be mean square of the random coefficients which vary with chosen T or ensemble member.

Power spectral density can now be defined from mean square coefficients

  • The Power spectral density then becomes
G n f = lim Δf 0 c k 2 ¯ 4Δf = lim Δf 0 a k 2 ¯ + b k 2 ¯ 4Δf size 12{G rSub { size 8{n} } left (f right )= {"lim"} cSub { size 8{Δf rightarrow 0} } { { {overline {c rSub { size 8{k} } rSup { size 8{2} } }} } over {4Δf} } = {"lim"} cSub { size 8{Δf rightarrow 0} } { { {overline {a rSub { size 8{k} } rSup { size 8{2} } }} + {overline {b rSub { size 8{k} } rSup { size 8{2} } }} } over {4Δf} } } {}
  • The power in the frequency range f1 to f2 is given by
P f 1 f 2 = f2 f1 G n f df + f1 f2 G n f df = 2 f1 f2 G n f df size 12{P left (f rSub { size 8{1} } rightarrow f rSub { size 8{2} } right )= Int rSub { size 8{ - f2} } rSup { size 8{ - f1} } {G rSub { size 8{n} } left (f right ) ital "df"} + Int rSub { size 8{f1} } rSup { size 8{f2} } {G rSub { size 8{n} } left (f right ) ital "df"} =2 Int rSub { size 8{f1} } rSup { size 8{f2} } {G rSub { size 8{n} } left (f right ) ital "df"} } {}
  • And total power PT is
P T = G n f df = 2 0 G n f df size 12{P rSub { size 8{T} } = Int rSub { size 8{ - infinity } } rSup { size 8{ infinity } } {G rSub { size 8{n} } left (f right ) ital "df"} =2 Int rSub { size 8{0} } rSup { size 8{ infinity } } {G rSub { size 8{n} } left (f right ) ital "df"} } {}

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Noise in communications. OpenStax CNX. Jul 07, 2008 Download for free at http://cnx.org/content/col10549/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Noise in communications' conversation and receive update notifications?

Ask