<< Chapter < Page Chapter >> Page >

Unit vectors

The unit vectors in the direction of a set of mutually orthogonal coordinate axis are defined as follows.

e ( 1 ) = [ 1 0 0 ] , e ( 2 ) = [ 0 1 0 ] , e ( 3 ) = [ 0 0 1 ]

The suffixes to e are enclosed in parentheses to show that they do not denote components. A vector, a , can be expressed in terms of its components, ( a 1 , a 2 , a 3 ) and the unit vectors.

a = a 1 e ( 1 ) + a 2 e ( 2 ) + a 3 e ( 3 )

This equation can be multiplied and divided by the magnitude of a to express the vector in terms of its magnitude and direction.

a = | a | ( a 1 | a | e ( 1 ) + a 2 | a | e ( 2 ) + a 3 | a | e ( 3 ) ) = | a | ( λ 1 e ( 1 ) + λ 2 e ( 2 ) + λ 3 e ( 3 ) )

where λ i are the directional cosines of a .

A special unit vector we will use often is the normal vector to a surface, n . The components of the normal vector are the directional cosines of the normal direction to the surface.

Scalar product – orthogonality

The scalar product (or dot product ) of two vectors, a and b is defined as

a b = | a | | b | cos θ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahggacqGHIaYTcaWHIbGaeyypa0ZaaqWaaeaacaWHHbaacaGLhWUaayjcSdGaaGPaVpaaemaabaGaaCOyaaGaay5bSlaawIa7aiaaykW7ciGGJbGaai4BaiaacohacqaH4oqCaaa@49FF@

where θ is the angle between the two vectors. If the two vectors are perpendicular to each other, i.e., they are orthogonal , then the scalar product is zero. The unit vectors along the Cartesian coordinate axis are orthogonal and their scalar product is equal to the Kronecker delta.

e ( i ) e ( j ) = δ i j = { 1 , i = j 0 , i j

The scalar product is commutative and distributive. The cosine of the angle measured from a to b is the same as measured from b to a . Thus the scalar product can be expressed in terms of the components of the vectors.

a b = ( a 1 e ( 1 ) + a 2 e ( 2 ) + a 3 e ( 3 ) ) ( b 1 e ( 1 ) + b 2 e ( 2 ) + b 3 e ( 3 ) ) = a i b j δ i j = a i b i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaqqabaGaaCyyaiabgkci3kaahkgacqGH9aqpdaqadaqaaiaadggadaWgaaWcbaGaaGymaaqabaGccaaMc8UaaCyzamaaBaaaleaacaGGOaGaaGymaiaacMcaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaakiaaykW7caWHLbWaaSbaaSqaaiaacIcacaaIYaGaaiykaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaGPaVlaahwgadaWgaaWcbaGaaiikaiaaiodacaGGPaaabeaaaOGaayjkaiaawMcaaiabgkci3oaabmaabaGaamOyamaaBaaaleaacaaIXaaabeaakiaaysW7caWHLbWaaSbaaSqaaiaacIcacaaIXaGaaiykaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaaGPaVlaahwgadaWgaaWcbaGaaiikaiaaikdacaGGPaaabeaakiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaaMc8UaaCyzamaaBaaaleaacaGGOaGaaG4maiaacMcaaeqaaaGccaGLOaGaayzkaaaabaGaeyypa0JaamyyamaaBaaaleaacaWGPbaabeaakiaaykW7caWGIbWaaSbaaSqaaiaadQgaaeqaaOGaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaOqaaiabg2da9iaadggadaWgaaWcbaGaamyAaaqabaGccaaMc8UaamOyamaaBaaaleaacaWGPbaabeaaaaaa@7B19@

The scalar product of a vector with itself is the square of the magnitude of the vector.

a a = | a | | a | cos 0 = | a | 2 a a = a i a i = | a | 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaqqabaGaaCyyaiabgkci3kaahggacqGH9aqpdaabdaqaaiaahggaaiaawEa7caGLiWoacaaMc8+aaqWaaeaacaWHHbaacaGLhWUaayjcSdGaaGPaVlGacogacaGGVbGaai4CaiaaykW7caaIWaaabaGaeyypa0ZaaqWaaeaacaWHHbaacaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaaGcbaGaaCyyaiabgkci3kaahggacqGH9aqpcaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaGPaVlaadggadaWgaaWcbaGaamyAaaqabaaakeaacqGH9aqpdaabdaqaaiaahggaaiaawEa7caGLiWoadaahaaWcbeqaaiaaikdaaaaaaaa@6096@

The most common application of the scalar product is the projection or component of a vector in the direction of another vector. For example, suppose n is a unit vector (e.g., the normal to a surface) the component of a in the direction of n is as follows.

a n = | a | cos θ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahggacqGHIaYTcaWHUbGaeyypa0ZaaqWaaeaacaWHHbaacaGLhWUaayjcSdGaaGPaVlGacogacaGGVbGaai4CaiaaykW7cqaH4oqCaaa@45FE@

Directional cosines for coordinate transformation

The properties of the directional cosines for the rotation of the Cartesian coordinate reference frame can now be easily illustrated. Suppose the unit vectors in the original system is e ( i ) and in the rotated system is e _ ( j ) . The components of the unit vector, e _ ( j ) , in the original reference frame is l i j . This can be expressed as the scalar product.

e ¯ ( j ) = l 1 j e ( 1 ) + l 2 j e ( 2 ) + l 3 j e ( 3 ) , j = 1 , 2 , 3 e ( i ) e ¯ ( j ) = l i j , i , j = 1 , 2 , 3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGabCyzayaaraWaaSbaaSqaaiaahIcacaWHQbGaaCykaaqabaGccqGH9aqpcaWGSbWaaSbaaSqaaiaaigdacaWGQbaabeaakiaaykW7caWHLbWaaSbaaSqaaiaahIcacaWHXaGaaCykaaqabaGccqGHRaWkcaWGSbWaaSbaaSqaaiaaikdacaWGQbaabeaakiaaykW7caWHLbWaaSbaaSqaaiaahIcacaWHYaGaaCykaaqabaGccqGHRaWkcaWGSbWaaSbaaSqaaiaaiodacaWGQbaabeaakiaaykW7caWHLbWaaSbaaSqaaiaahIcacaWHZaGaaCykaaqabaGccaaMe8UaaiilaiaaywW7caWGQbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodaaeaacaWHLbWaaSbaaSqaaiaahIcacaWHPbGaaCykaaqabaGccqGHIaYTceWHLbGbaebadaWgaaWcbaGaaCikaiaahQgacaWHPaaabeaakiabg2da9iaadYgadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaGjbVlaacYcacaaMf8UaamyAaiaacYcacaWGQbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodaaaaa@7331@

Since e _ ( j ) is a unit vector, it has a magnitude of unity.

e ¯ ( j ) e ¯ ( j ) = 1 = l i ( j ) l i ( j ) = l 1 ( j ) l 1 ( j ) + l 2 ( j ) l 2 ( j ) + l 3 ( j ) l 3 ( j ) , j = 1 , 2 , 3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqahwgagaqeamaaBaaaleaacaWHOaGaaCOAaiaahMcaaeqaaOGaeyOiGCRabCyzayaaraWaaSbaaSqaaiaahIcacaWHQbGaaCykaaqabaGccqGH9aqpcaaIXaGaeyypa0JaamiBamaaBaaaleaacaWGPbGaaiikaiaadQgacaGGPaaabeaakiaaykW7caWGSbWaaSbaaSqaaiaadMgacaGGOaGaamOAaiaacMcaaeqaaOGaeyypa0JaamiBamaaBaaaleaacaaIXaGaaiikaiaadQgacaGGPaaabeaakiaaykW7caWGSbWaaSbaaSqaaiaaigdacaGGOaGaamOAaiaacMcaaeqaaOGaey4kaSIaamiBamaaBaaaleaacaaIYaGaaiikaiaadQgacaGGPaaabeaakiaaykW7caWGSbWaaSbaaSqaaiaaikdacaGGOaGaamOAaiaacMcaaeqaaOGaey4kaSIaamiBamaaBaaaleaacaaIZaGaaiikaiaadQgacaGGPaaabeaakiaaykW7caWGSbWaaSbaaSqaaiaaiodacaGGOaGaamOAaiaacMcaaeqaaOGaaGjbVlaacYcacaaMf8UaamOAaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaaaaa@7487@

Also, the axis of a Cartesian system are orthorgonal.

e ( i ) e ( j ) = { 0 , if i j 1 , if i = j thus e ( i ) e ( j ) = d i j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCyzamaaBaaaleaacaWHOaGaaCyAaiaahMcaaeqaaOGaeyOiGCRaaCyzamaaBaaaleaacaWHOaGaaCOAaiaahMcaaeqaaOGaeyypa0ZaaiqaaeaafaqabeGabaaabaGaaGimaiaaysW7caGGSaGaaGzbVlaabMgacaqGMbGaaGjbVlaadMgacqGHGjsUcaWGQbaabaGaaGymaiaacYcacaaMf8UaaeyAaiaabAgacaaMe8UaamyAaiabg2da9iaadQgaaaaacaGL7baaaeaacaqG0bGaaeiAaiaabwhacaqGZbaabaGaaCyzamaaBaaaleaacaWHOaGaaCyAaiaahMcaaeqaaOGaeyOiGCRaaCyzamaaBaaaleaacaWHOaGaaCOAaiaahMcaaeqaaOGaeyypa0JaeqiTdq2aaSbaaSqaaiaadMgacaWGQbaabeaaaaaa@6583@
e ¯ ( i ) e ¯ ( j ) = l k i l k j = l 1 i l 1 j + l 2 i l 2 j + l 3 i l 3 j , i , j = 1 , 2 , 3 = δ i j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8sipiYdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaqqabaGabCyzayaaraWaaSbaaSqaaiaahIcacaWHPbGaaCykaaqabaGccqGHIaYTceWHLbGbaebadaWgaaWcbaGaaCikaiaahQgacaWHPaaabeaakiabg2da9iaadYgadaWgaaWcbaGaam4AaiaadMgaaeqaaOGaaGPaVlaadYgadaWgaaWcbaGaam4AaiaadQgaaeqaaOGaeyypa0JaamiBamaaBaaaleaacaaIXaGaamyAaaqabaGccaaMc8UaamiBamaaBaaaleaacaaIXaGaamOAaaqabaGccqGHRaWkcaWGSbWaaSbaaSqaaiaaikdacaWGPbaabeaakiaaykW7caWGSbWaaSbaaSqaaiaaikdacaWGQbaabeaakiabgUcaRiaadYgadaWgaaWcbaGaaG4maiaadMgaaeqaaOGaaGPaVlaadYgadaWgaaWcbaGaaG4maiaadQgaaeqaaOGaaGjbVlaacYcacaaMf8UaamyAaiaacYcacaWGQbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaaiodaaeaacqGH9aqpcqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaaaaaa@6E59@

Vector product

The vector product (or cross product ) of two vectors, a and b , denoted as a × b , is a vector that is perpendicular to the plane of a and b such that a , b , and a × b form a right-handed system. (i.e., a , b , and a × b have the orientation of the thumb, first finger, and third finger of the right hand.) It has the following magnitude where θ is the angle between a and b .

| a × b | = | a | | b | sin θ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaemaabaGaaCyyaiabgEna0kaahkgaaiaawEa7caGLiWoacqGH9aqpdaabdaqaaiaahggaaiaawEa7caGLiWoacaaMc8+aaqWaaeaacaWHIbaacaGLhWUaayjcSdGaaGPaVlGacohacaGGPbGaaiOBaiaaykW7cqaH4oqCcqGHEisPaaa@50B4@

The magnitude of the vector product is equal to the area of a parallelogram two of whose sides are the vectors a and b .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Transport phenomena. OpenStax CNX. May 24, 2010 Download for free at http://cnx.org/content/col11205/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Transport phenomena' conversation and receive update notifications?

Ask