<< Chapter < Page Chapter >> Page >

In classrooms, behaviorism is most useful for identifying relationships between specific actions by a student and the immediate precursors and consequences of the actions. It is less useful for understanding changes in students’ thinking; for this purpose we need a more cognitive (or thinking-oriented) theory, like the ones described later in this chapter. This fact is not really a criticism of behaviorism as a perspective, but just a clarification of its particular strength or source of usefulness, which is to highlight observable relationships among actions, precursors and consequences. Behaviorists use particular terms (or “lingo”, some might say) for these relationships. They also rely primarily on two basic images or models of behavioral learning, called classical conditioning and operant conditioning . The names are derived partly from the major learning mechanisms highlighted by each type, which I describe next.

Classical conditioning: learning new associations with prior behaviors

As originally conceived, classical conditioning begins with the involuntary responses to particular sights, sounds, or other sensations (Lavond, 2003). When I receive an injection from a nurse or doctor, for example, I cringe, tighten my muscles, and even perspire a bit. Whenever a contented, happy baby looks at me, on the other hand, I invariably smile in response. I cannot help myself in either case; both of the responses are automatic. In humans as well as other animals, there is a repertoire or variety of such specific, involuntary behaviors. At the sound of a sudden loud noise, for example, most of us show a “startle” response—we drop what we are doing (sometimes literally!), our heart rate shoots up temporarily, and we look for the source of the sound. Cats, dogs and many other animals (even fish in an aquarium) show similar or equivalent responses.

Involuntary stimuli and responses were first studied systematically early in the twentieth-century by the Russian scientist Ivan Pavlov (1927). Pavlov’s most well-known work did not involve humans, but dogs, and specifically their involuntary tendency to salivate when eating. He attached a small tube to the side of dogs’ mouths that allowed him to measure how much the dogs salivated when fed ( [link] shows a photograph of one of Pavlov's dogs). But he soon noticed a “problem” with the procedure: as the dogs gained experience with the experiment, they often salivated before they began eating. In fact the most experienced dogs sometimes began salivating before they even saw any food, simply when Pavlov himself entered the room! The sight of the experimenter, which had originally been a neutral experience for the dogs, became associated with the dogs’ original salivation response. Eventually, in fact, the dogs would salivate at the sight of Pavlov even if he did not feed them.

This change in the dogs’ involuntary response, and especially its growing independence from the food as stimulus, eventually became the focus of Pavlov’s research. Psychologists named the process classical conditioning because it describes changes in responses to stimuli. Classical conditioning has several elements, each with a special name. To understand these, look at and imagine a dog (perhaps even mine, named Ginger) prior to any conditioning. At the beginning Ginger salivates (an unconditioned response (UR) ) only when she actually tastes her dinner (an unconditioned stimulus (US) ). As time goes by, however, a neutral stimulus—such as the sound of opening a bag containing fresh dog food—is continually paired with the eating/tasting experience. Eventually the neutral stimulus becomes able to elicit salivation even before any dog food is offered to Ginger, or even if the bag of food is empty! At this point the neutral stimulus is called a conditioned stimulus (UCS) and the original response is renamed as a conditioned response (CR) . Now, after conditioning, Ginger salivates merely at the sound of opening any large bag, regardless of its contents. (I might add that Ginger also engages in other conditioned responses, such as looking hopeful and following me around the house at dinner time.)

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Oneonta epsy 275. OpenStax CNX. Jun 11, 2013 Download for free at http://legacy.cnx.org/content/col11446/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Oneonta epsy 275' conversation and receive update notifications?

Ask