# 0.1 Atomic masses and molecular formulas  (Page 6/10)

 Page 6 / 10

This is a good start, but now we need more elements. To bring in hydrogen, we can analyze the data from [link] in the first Concept Development Study which gives the mass ratio of oxygen and hydrogen in water. That data shows that the mass ratio of oxygen to hydrogen is 7.93 to 1.00. But we found in the previous section that the molecular formula of water is H 2 O. This means that in a sample of water there are twice as many hydrogen atoms as there are oxygen atoms. Therefore, the ratio of the mass of one oxygen atom to one hydrogen atom must be 7.93 to 0.50, or 15.86 to 1.00.

These atomic mass ratios need to be consistent with each other, since the masses of the atoms of an element are always the same. So if the ratio of one hydrogen to one oxygen is 1.00 to 15.86, and the ratio of one nitrogen to one oxygen is 1.00 to 1.14, then the ratio of one hydrogen to one nitrogen must be 1.00 to 13.91. We should be able to check this by looking at the hydrogen-nitrogen compound ammonia, also listed in [link] of the previous Concept Development Study. There we find that the mass ratio of nitrogen to hydrogen is 4.65 to 1.00. Clearly, ammonia is not NH. To find the molecular formula of ammonia, we need data from the Law of Combining Volumes. Experimental data reveal that 1 L of N 2 reacts with 3 L of H 2 to produce 2 L of ammonia. From this, we should be able to conclude that an ammonia molecule has the molecular formula NH 3 . Therefore, in a sample of ammonia, there are three times as many hydrogen atoms as there are nitrogen atoms. This means that the ratio of the mass of a nitrogen atom to a hydrogen atom is 3*4.65 to 1.00, or 13.95 to 1.00. We now have enough data to say that hydrogen, nitrogen, and oxygen atoms have mass ratio of 1.00:13.95:15.86.

## Observation 3: atomic masses for non-gaseous elements

The next element we would certainly like to have an atomic mass for would be carbon, and we would certainly like to be able to determine molecular formulas for carbon containing compounds. We have data from [link] in the previous CDS on compounds of hydrogen and carbon. But our analysis is not going to work this time. The Law of Combining Volumes and Avogadro’s Law in combination allow us to count atoms and find molecular formulas, but only for elements and compounds which are gases. Carbon is not a gas. It exists in several different elemental forms, but all are solid at normal temperatures and even at very high temperatures.

This means that we need to work harder and add some additional observations to our work. Let’s start with the two most common oxides of carbon, which for now we will give the names Oxide A and Oxide B. (Their real names, carbon monoxide and carbon dioxide, are based on assuming that we already know their molecular formulas. But we don’t know these, so we’ll stick with these code names for now.) Here are the data for the mass relationships from the Law of Multiple Proportions:

 Compound Total Mass (g) Mass of Carbon (g) Mass of Oxygen (g) Oxide A 2.33 1.00 1.33 Oxide B 3.66 1.00 2.66

anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!