
Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us,

http://www2.austin.cc.tx.us/baldwin/

The AWT Package, The Canvas Component

Java Programming, Lesson # 146, Revised 02/03/98.

 Preface

 Introduction

 Canvas

 Sample Program

o Interesting Code Fragments

o Program Listing

 Review

Preface

Students in Prof. Baldwin's Advanced Java Programming classes at ACC are responsible for

knowing and understanding all of the material in this lesson.

Introduction

This series of lessons is concentrating on the package java.awt where most of the functionality

exists for providing the user interface to your application or applet.

We learned earlier how to handle events and how to use layout managers.These two topics form

the basis for the design and implementation of a Graphical User Interface (GUI).

Now we are learning about the various components that we can combine with layout and event

handling to produce an effective Graphical User Interface.

The available components are defined by classes in the package java.awt. Our approach is to

group those classes into categories and study the material on a category basis. As of this writing,

the remaining categories are:

 The Canvas Class
 Graphics - Shapes, Fonts, Images

 The PrintJob Class

 The Toolkit Class

This lesson will concentrate on the Canvas class. As things develop, it may be necessary to

modify these groupings.

mailto:baldwin@austin.cc.tx.us
http://www2.austin.cc.tx.us/baldwin/

Canvas

The inheritance hierarchy for the Canvas class is as shown below.

java.lang.Object

 |

 +----java.awt.Component

 |

 +----java.awt.Canvas

According to the JavaSoft documentation:

"A Canvas component represents a blank rectangular area of the screen onto which the

application can draw or from which the application can trap input events from the user.

An application must subclass the Canvas class in order to get useful functionality such as

creating a custom component. The paint method must be overridden in order to perform custom

graphics on the canvas."

According to Campione and Walrath:

"The Canvas class exists to be subclassed. It does nothing on its own; it merely provides a way

for you to implement a custom Component. For example, Canvases are useful as display areas

for images and custom graphics, whether or not you wish to handle events that occur within the

display area."

An important caution provided by Campione and Walrath follows:

"When implementing a Canvas subclass, take care to implement the minimumSize() and

preferredSize() methods to properly reflect your canvas's size. Otherwise, depending on the

layout your canvas's container uses, your canvas could end up too small -- perhaps even

invisible."

This particular caution wasn't important in the main sample program that follows because the

layout manager being used (BorderLayout) ignores the two size parameters mentioned above and

fills the available space in the Center of the layout with the Canvas object. However, there is

another sample program at the end of this lesson that does deal with the size of the canvas. You

should become familiar with both of these programs.

In summary, a Canvas object emulates its namesake in the art world. It provides a workspace on

which you can draw or paint.

However, unlike its namesake in the art world, it also provides a surface on which you can

recognize events.

Canvas Class

The Canvas class is very simple consisting of a single constructor with no arguments and two

methods.

The two methods of the class are as follows:

addNotify() Creates the peer of the canvas.

paint(Graphics) This method is called to repaint this canvas.

Sample Program

This program is designed to illustrate the use of the Canvas class.

It also illustrates the ability to instantiate listener objects that can manipulate the source objects

on which they are registered without the requirement to pass references to those source objects

when the listener objects are instantiated.

Thus, no parameterized constructors are used in the instantiation of listener objects in this

program.

When the program first appears on the screen, four non-functionalButton objects and a green

Canvas object appear in a Frame object. The objects are separated by horizontal and vertical

gaps of thirty pixels. The Button objects are provided simply to cause the Frame object to

contain something other than the Canvas object.

The four Button objects are placed at the borders of the Frame object using the BorderLayout

manager. The Canvas object is placed in the Center of the Frame object. As mentioned earlier,

the BorderLayout manager fills all the available space with the object in the Center and

therefore, the preferredSizeand minimumSize parameters weren't a consideration in this program.

When you click on the green Canvas object, the coordinates of the mouse pointer are displayed

on that object. If you have studied earlier lessons in this tutorial, you will recognize this program

to be very similar to an earlier program where the coordinates of a mouse click were displayed in

the client area of a Frame object. The main difference is that in the earlier program, the Frame

object itself was the source of the mouse events, and in this program, a Canvas object that is

placed in a Frame object is the source for mouse events.

No listener objects were registered for the Frame object or for any of the Button objects.

Therefore, clicking in the gaps or clicking on the buttons has no effect on the program.

Clicking on the close button on the Frame object terminates the program and returns control to

the operating system.

These results were produced using JDK 1.1.3, running under Windows 95.

Interesting Code Fragments

As mentioned above, this program is very similar to a program in a previous lesson which

displays the coordinates of mouse clicks in the client area of a Frame object.

The first interesting code fragment in this version of the program is the code in which we

subclass the Canvas class in order to override the Paint method, and also to cause the object to

be green when it is first instantiated.

class MyCanvas extends Canvas{

 int clickX;

 int clickY;

 public MyCanvas(){//constructor

 this.setBackground(Color.green);

 }//end constructor

 //Override the paint() method.

 public void paint(Graphics g){

 g.drawString(

 "" + clickX + ", " + clickY, clickX, clickY);

 }//end paint()

}//end class MyCanvas

The next interesting code fragment is the code used to create a BorderLayout manager,with

horizontal and vertical gaps, for the Frame object. Although the default layout manager for

Frame is BorderLayout, gaps are not included in the default. If gaps are desired, it is necessary

to use a named layout manager on which to invoke the methods to set the gaps.

 //Create a border layout with gaps.

 BorderLayout myLayout = new BorderLayout();

 myLayout.setVgap(30);

 myLayout.setHgap(30);

 this.setLayout(myLayout);//Apply layout to the Frame object

The next interesting code fragment instantiates the Canvas object from the class named

MyCanvas that extends Canvas and adds it to the center position of the Frame object. The

MyCanvas object is not instantiated as an anonymous object. Rather, it is instantiated as a

named object so that a mouse listener object can be registered on it later.

 MyCanvas myCanvasObject = new MyCanvas();

 this.add(myCanvasObject,"Center");

This is followed by some code that you have seen many times in the past to add some buttons to

the Frame object and make the composite of all the objects visible. There is also some code to

register a WindowListener object to terminate the program when the user clicks the close button

on the Frame object. That code is not shown here.

The next interesting code fragment instantiates and registers a Listener object which will process

mouse events to determine and display the coordinates when the user presses the mouse button

on the MyCanvas object.

Note that the Listener object is instantiated anonymously and no reference to the MyCanvas

object is passed to the constructor for the Listener object. Therefore, the listener object must

identify the component on which to display coordinate information from within its own code.

We will see later that the identification is based on the MouseEvent object that is passed to the

event listener when the event occurs.

 myCanvasObject.addMouseListener(new MouseProc());

The final interesting code fragment is the definition of the listener class that displays the

coordinates of the mouse pointer when the left mouse button is pressed on an object for which an

object of the class is registered.

This version uses the getComponent() method on the incoming MouseEvent object to identify

the component that was the source of the event. This method returns a reference to an object of

type Component which must be downcast to type MyCanvas before it can be used to access the

instance variables of an object of type MyCanvas.

class MouseProc extends MouseAdapter{

 //Override the mousePressed method

 public void mousePressed(MouseEvent e){

 //Get x and y coordinates of the mouse pointer and

 // store in the instance variables of the MyCanvas

 // object.

 ((MyCanvas)e.getComponent()).clickX = e.getX();

 ((MyCanvas)e.getComponent()).clickY = e.getY();

 //display coordinate information

 e.getComponent().repaint();

 }//end mousePressed()

}//end class MouseProc

The remaining code in this program is code that you have seen many times in the past and

therefore will not be highlighted in this section.

Program Listing

This section contains a complete listing of the program.

/*File Canvas01.java Copyright 1997, R.G.Baldwin

Illustrates the use of the Canvas class.

Also illustrates the ability to instantiate listener

objects that can manipulate the source objects on which

they are registered without the requirement to pass

references to those source objects when the listener

objects are instantiated.

No parameterized constructors are used in the

instantiation of listener objects in this program.

When the program first appears on the screen, four non-

functional buttons and a green Canvas object appear in a

Frame object. The objects are separated by horizontal and

vertical gaps of thirty pixels.

The four buttons are placed at the borders of the Frame

object using the BorderLayout manager. The Canvas object

is placed in the Center of the Frame object.

When you click on the green Canvas object, the coordinates

of the mouse pointer are displayed.

Clicking in the gaps or clicking on the buttons has no

effect on the program.

Clicking on the close button on the Frame object

terminates the program and returns control to the

operating system.

These results were produced using JDK 1.1.3, running under

Windows 95.

*/

//===//

import java.awt.*;

import java.awt.event.*;

//===//

//Subclass Canvas in order to override the paint method

// and to make it green when instantiated.

class MyCanvas extends Canvas{

 int clickX;

 int clickY;

 public MyCanvas(){//constructor

 this.setBackground(Color.green);

 }//end constructor

 //Override the paint() method.

 public void paint(Graphics g){

 g.drawString(

 "" + clickX + ", " + clickY, clickX, clickY);

 }//end paint()

}//end class MyCanvas

//===//

class Canvas01 extends Frame{//controlling class

 public static void main(String[] args){

 //instantiate an object of this type

 new Canvas01();

 }//end main

 public Canvas01(){//constructor

 //Create a border layout with gaps.

 BorderLayout myLayout = new BorderLayout();

 myLayout.setVgap(30);

 myLayout.setHgap(30);

 this.setLayout(myLayout);//Apply layout to the Frame

 this.setTitle("Copyright 1997, R.G.Baldwin");

 this.setSize(300,300);

 //Instantiate a green customized Canvas object

 MyCanvas myCanvasObject = new MyCanvas();

 //Add the MyCanvas object to the center of the

 // Frame object.

 this.add(myCanvasObject,"Center");

 //Add four nonfunctional buttons to the borders

 // of the Frame object

 this.add(new Button("North"),"North");

 this.add(new Button("South"),"South");

 this.add(new Button("East"),"East");

 this.add(new Button("West"),"West");

 this.setVisible(true);//make it all visible

 //Instantiate and register Listener object which will

 // terminate the program when the user closes the

 // Frame.

 WProc1 winProcCmd1 = new WProc1();

 this.addWindowListener(winProcCmd1);

 //Instantiate and register Listener object which will

 // process mouse events to determine and display the

 // coordinates when the user presses the mouse button

 // on the MyCanvas object.

 // Note that the Listener object is instantiated

 // anonymously and no reference to the MyCanvas object

 // is passed to the constructor for the Listener

 // object.

 myCanvasObject.addMouseListener(new MouseProc());

 }//end constructor

}//end class Canvas01 definition

//===//

//This listener class monitors for mouse presses and

// displays the coordinates of the mouse pointer when the

// mouse is pressed on the object for which it is

// registered.

class MouseProc extends MouseAdapter{

 //Override the mousePressed method

 public void mousePressed(MouseEvent e){

 //Get x and y coordinates of the mouse pointer and

 // store in the instance variables of the MyCanvas

 // object. Note the requirement to cast the component

 // to the type of MyCanvas in order to access the

 // instance variables.

 ((MyCanvas)e.getComponent()).clickX = e.getX();

 ((MyCanvas)e.getComponent()).clickY = e.getY();

 //display coordinate information

 e.getComponent().repaint();

 }//end mousePressed()

}//end class MouseProc

//===//

//The following listener is used to terminate the program

// when the user closes the frame.

class WProc1 extends WindowAdapter{

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }//end windowClosing()

}//end class WProc1

//===//

.

Review

Q - Without viewing the solution that follow, write a Java application that meets the

specifications given in the comments at the beginning of the following program.

A - See the specifications and the solution below.

/*File SampProg140.java Copyright 1997, R.G.Baldwin

Illustrates the use of the Canvas class along with the

requirement to establish the size of a Canvas object

for use with certain types of layout managers.

Also illustrates the ability to instantiate listener

objects that can manipulate the source objects on which

they are registered without the requirement to pass

references to those source objects when the listener

objects are instantiated.

No parameterized constructors are used in the

instantiation of listener objects in this program.

When the program first appears on the screen, two green

Canvas objects appear in a Frame object. The Frame object

is approximately 300 by 300 pixels in size.

One of the green Canvas objects is 100 pixels wide and 150

pixels in height. The other green Canvas object is 50

pixels wide and 150 pixels in height.

The green Canvas objects are separated by a horizontal gap

of 30 pixels when they are side-by-side and are separated

by a vertical gap of 30 pixels when they are arranged in

a column.

When you click on either of the green Canvas objects, the

coordinates of the mouse pointer are displayed near the

mouse pointer.

Clicking in the gaps between the Canvas objects, or

clicking in the other area outside the Canvas objects has

no effect on the program.

Clicking on the close button on the Frame object

terminates the program and returns control to the

operating system.

These results were produced using JDK 1.1.3, running under

Windows 95.

*/

//===//

import java.awt.*;

import java.awt.event.*;

//===//

//Subclass Canvas in order to override the paint method

// and to set the size and color of the Canvas object

// when it is instantiated.

class MyCanvas extends Canvas{

 int clickX;

 int clickY;

 public MyCanvas(int width, int height){//constructor

 this.setBackground(Color.green);

 this.setSize(width,height);

 }//end constructor

 //Override the paint() method to display coordinate data

 public void paint(Graphics g){

 g.drawString(

 "" + clickX + ", " + clickY, clickX, clickY);

 }//end paint()

}//end class MyCanvas

//===//

class SampProg140 extends Frame{//controlling class

 public static void main(String[] args){

 //instantiate an object of this type

 new SampProg140();

 }//end main

 public SampProg140(){//constructor

 //Create a flow layout with gaps.

 FlowLayout myLayout = new FlowLayout();

 myLayout.setVgap(30);

 myLayout.setHgap(30);

 this.setLayout(myLayout);//Apply layout to the Frame

 this.setTitle("Copyright 1997, R.G.Baldwin");

 this.setSize(300,300);

 //Instantiate two green customized Canvas objects

 MyCanvas oneCanvasObject = new MyCanvas(100,150);

 MyCanvas anotherCanvasObject = new MyCanvas(50,100);

 //Add the MyCanvas objects to the Frame object.

 this.add(oneCanvasObject);

 this.add(anotherCanvasObject);

 this.setVisible(true);//make it all visible

 //Instantiate and register Listener object which will

 // terminate the program when the user closes the

 // Frame.

 WProc1 winProcCmd1 = new WProc1();

 this.addWindowListener(winProcCmd1);

 //Instantiate and register Listener objects which will

 // process mouse events to determine and display the

 // coordinates when the user presses the mouse button

 // on either MyCanvas object.

 // Note that the Listener objects are instantiated

 // anonymously and no reference to the MyCanvas object

 // is passed to the constructors for the Listener

 // objects.

 oneCanvasObject.addMouseListener(new MouseProc());

 anotherCanvasObject.addMouseListener(new MouseProc());

 }//end constructor

}//end class SampProg140 definition

//===//

//This listener class responds to mouse presses and

// displays the coordinates of the mouse pointer when the

// mouse is pressed on the object for which it is

// registered.

class MouseProc extends MouseAdapter{

 //Override the mousePressed method

 public void mousePressed(MouseEvent e){

 //Get x and y coordinates of the mouse pointer and

 // store in the instance variables of the MyCanvas

 // object. Note the requirement to cast the component

 // to the type of MyCanvas in order to access the

 // instance variables.

 ((MyCanvas)e.getComponent()).clickX = e.getX();

 ((MyCanvas)e.getComponent()).clickY = e.getY();

 //display coordinate information

 e.getComponent().repaint();

 }//end mousePressed()

}//end class MouseProc

//===//

//The following listener is used to terminate the program

// when the user closes the frame.

class WProc1 extends WindowAdapter{

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }//end windowClosing()

}//end class WProc1

//===//

-end-

