
Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us,

http://www2.austin.cc.tx.us/baldwin/

The AWT Package, Graphics- The Utility Methods

Java Programming, Lecture Notes # 164, Revised 02/06/98.

 Preface

 Introduction

 Getting a Graphics Context

o Sample Program to Get and Use a Graphics Context

 Copying and Clearing a Graphics Context

o Sample Program to Illustrate Copying and Clearing

 Creating a new Graphics Object

o Sample Programs to Illustrate Creating a new Graphics Object

 Using the translate() Method

o Sample Program to Illustrate use of the translate() Method

 XOR Mode vs Paint Mode

o Sample Program to Illustrate use of XOR and Paint modes

 Summary

Preface

Students in Prof. Baldwin's Advanced Java Programming classes at ACC are responsible for

knowing and understanding all of the material in this lesson.

Introduction

A previous lesson provided an overview of the Graphics class, and grouped the methods of that

class into several different categories. This lesson will explore some of the methods in the

category of graphics utility methods.

To review, the following methods were put into the utility category:

clearRect(int, int, int, int) - Clears the specified rectangle by filling it with the background color

of the current drawing surface.

copyArea(int, int, int, int, int, int) - Copies an area of the component specified by the first four

parameters to another location on the graphics context at a distance specified by the last two

parameters.

create() - Creates a new Graphics object that is a copy of the Graphics object on which it is

mailto:baldwin@austin.cc.tx.us
http://www2.austin.cc.tx.us/baldwin/

invoked.

dispose() - Disposes of the graphics context on which it is invoked and releases any system

resources that it is using. This includes system resources other than memory. A Graphics object

cannot be used after dispose has been called. It is important that you manually dispose of your

Graphics objects (created directly from a component or other Graphics object) when you no

longer need them rather than to wait for finalization.

finalize() - Disposes of this graphics context once it is no longer referenced.

getColor() - Gets this graphics context's current color.

setColor(Color) - Sets this graphics context's current color to the specified color. Subsequent

graphics operations using this graphics context use this specified color.

setPaintMode() - Sets the paint mode of this graphics context to overwrite the destination with

this graphics context's current color (as opposed to XORMODE). Subsequent rendering

operations will overwrite the destination with the current color.

setXORMode(Color) - Sets the paint mode of this graphics context to alternate between this

graphics context's current color and the new specified color.

toString() - Returns a String object representing this Graphics object's value.

translate(int, int) - Translates the origin of the graphics context to the point (x, y) in the current

coordinate system.

Getting a Graphics Context

What does it mean to "get a graphics context?" In layman's terms, this means that your

application has gained the ability to draw or place images on a component that has the ability to

support drawing and images.

According to Java Software Solutions by Lewis and Loftus:

"Each Graphics object represents a particular drawing surface. ... The Graphics object defines a

graphics context through which we manage all graphic activities on that surface."

According to Just Java 1.1 and Beyond by Peter van der Linden:

"A Graphics object is what you ultimately draw lines, shapes, and text on. It is also called a

"graphics context" in some window systems because it bundles together information about a

drawable area, plus font, color, clipping region, and other situational factors."

Now that we know what a graphics context is, how do we get one?

To begin with, we don't get one by instantiating an object of type Graphics. The Graphics class

cannot be directly instantiated by the code that you write for your application. Rather, we can get

a graphics context in one of several indirect ways.

One way to get a graphics context is to invoke the getGraphics() method on another object.

However, according to Java AWT Reference by John Zukowski:

"The getGraphics() method returns the image's graphics context. The method getGraphics()

works only for Image objects created in memory with Component.createImage(int, int)."

The getGraphics() method is commonly used when images are being created in memory and

then transferred to the screen (double buffering). We will see some examples of double buffering

in a subsequent lesson.

This leaves us with two other ways to get a graphics context and they are surprisingly simple.

When you override either the paint(Graphics g) method or the update(Graphics g) method, the

graphics context of the object on which the method is overridden is automatically passed in as a

parameter.

We typically override the paint() method whenever we want to place graphics material on the

screen. While it is possible to also override update() this is usually done only in special

circumstances (such as animation and double buffering).

The normal approach to displaying graphics material is to place code in the overridden paint()

method to do the job and then to invoke repaint() to ask the system to paint the new material on

the screen. Note that the paint() method can also be invoked due to external causes (such as the

user moving things around on the screen) totally outside the control of your program.

Hopefully the following three quotations from AWT Reference by John Zukowski will help to

make this more clear.

public void repaint() - The repaint() method requests the scheduler to redraw the component as

soon as possible. This will result in update() getting called soon thereafter. There is not a one-to-

one correlation between repaint() and update() calls. It is possible that multiple repaint() calls

can result in a single update() - Zukowski

public void update(Graphics g) - The update() method is automatically called when you ask to

repaint the Component. If the component is not lightweight, the default implementation of

update() clears graphics context g by drawing a filled rectangle in the background color,

resetting the color to the current foreground color, and calling paint(). If you do not override

update() when you do animation, you will see some flickering because Component clears the

screen. - Zukowski

public void paint(Graphics g) - The paint() method is offered so the system can display

whatever you want in a Component. In the base Component class, this method does absolutely

nothing. Ordinarily, it would be overridden in an applet to do something other than the default,

which is display a box in the current background color. g is the graphics context of the

component being drawn upon. - Zukowski

Sample Program to Get and Use a Graphics Context

So, let's see some code, and lets start out by making it simple from a graphics viewpoint. The

following sample program illustrates getting and using a graphics context.

The drawString() method in the following sample program is invoked on the graphics context of

a Frame object to display the string "Hello World".

When you compile and run this program, a Frame object will appear on the screen. The client

area of the Frame object will display the words "Hello World".

When you press the close button on the Frame object, the program will terminate and control

will be returned to the operating system.

The key item in this program, from a graphics viewpoint, is the overridden paint() method that

draws the string data on the graphics context passed in as a parameter to paint(). That material is

highlighted in boldface so that you can locate it easily.

/*File Graphics01.java

Copyright 1997, R.G.Baldwin

This program was tested using JDK 1.1.3 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

class Graphics01 extends Frame{ //controlling class

 //Override the paint method to display the string "Hello

 // World" on the graphics context of the Frame object.

 public void paint(Graphics g){

 g.drawString("Hello World",100,40);

 }//end paint()

 public Graphics01(){//constructor

 this.setTitle("Copyright 1997, R.G.Baldwin");

 this.setSize(350,50);

 this.setVisible(true);

 //Anonymous inner-class listener to terminate program

 this.addWindowListener(

 new WindowAdapter(){//anonymous class definition

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program

 }//end windowClosing()

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

 public static void main(String[] args){

 new Graphics01();//instantiate this object

 }//end main

}//end Graphics01 class

//===//

What about that anonymous inner-class listener statement. Well, I told you that the program was

going to be simple from a graphics viewpoint. At least the paint() method is simple. In case you

don't know about inner-classes, you can learn about them in one of my earlier lessons.

Copying and Clearing in a Graphics Context

The two methods that are of primary interest in this section are copyArea() and clearRect().

We'll begin with clearRect() because it is the simpler of the two. This method clears a specified

rectangle by filling it with the background color of the current drawing surface. The method has

four parameters as follows:

Parameters:

x - the x coordinate of the rectangle to clear.

y - the y coordinate of the rectangle to clear.

width - the width of the rectangle to clear.

height - the height of the rectangle to clear.

As in virtually all graphics methods in Java, the x and y coordinates refer to the upper left-hand

corner of the rectangular area to be cleared.

Now consider the method named copyArea(). This method copies a rectangular area of the

current drawing surface to another area which is separated from the first by a distance specified

by dx and dy. The method copies downwards and to the right. To copy an area of the drawing

surface to the left or upwards, specify a negative value for dx or dy. Any portion of the source

rectangle that is outside the current drawing surface won't be copied.

This method has six parameters as shown below.

Parameters:

x - the x coordinate of the source rectangle.

y - the y coordinate of the source rectangle.

width - the width of the source rectangle.

height - the height of the source rectangle.

dx - the horizontal distance to copy the pixels.

dy - the vertical distance to copy the pixels.

Sample Program to Illustrate Copying and Clearing

The following program illustrates the use of the copyArea() and clearRect() methods of the

Graphics class.

This program draws the string "Hello World" in the upper left corner of a Frame object. Then it

uses the copyArea() method to make two additional copies of the drawing by copying a

rectangular area from the upper left corner to two other areas.

Then it uses the clearRect() method to erase most of the letter "H" from the second copy by

clearing a rectangular portion of the screen that contains part of the drawing of the letter "H".

When you compile and run this program, a Frame object will appear on the screen. The client

area of the Frame object will display the words Hello World in two different locations, and the

same words with part of the "H" missing in another location.

When you press the close button on the Frame object, the program will terminate and control

will be returned to the operating system.

A listing of the program follows with interesting code fragments highlighted in boldface.

/*File Graphics02.java

Copyright 1997, R.G.Baldwin

This program was tested using JDK 1.1.3 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

class Graphics02 extends Frame{ //controlling class

 //Override the paint method to display the string "Hello

 // World" on the graphics context of the Frame object.

 public void paint(Graphics g){

 g.drawString("Hello World",10,40);//draw the string

 g.copyArea(0,0,100,100,100,0); //copy to another spot

 g.copyArea(0,0,100,100,100,50); //copy to another spot

 g.clearRect(100,50,15,50); //erase part of second copy

 }//end paint()

 public Graphics02(){//constructor

 this.setTitle("Copyright 1997, R.G.Baldwin");

 this.setSize(350,150);

 this.setVisible(true);

 //Anonymous inner-class listener to terminate program

 this.addWindowListener(

 new WindowAdapter(){//anonymous class definition

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program

 }//end windowClosing()

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

 public static void main(String[] args){

 new Graphics02();//instantiate this object

 }//end main

}//end Graphics02 class

//===//

Creating a new Graphics Object

According to some authors, the create() method creates a new Graphics object that is a copy of

the Graphics object on which it is invoked. It might be more appropriate to say that it creates a

second reference to the Graphics object on which it is invoked because figures drawn using the

new reference appear on the original graphics context when it is rendered.

Whether it is a new object, or simply a second reference to the original object, we will see that in

many ways, it behaves as though it is a second reference to the original object.

The primary purpose of this section is to illustrate the use of the create() method. Along the way,

we will also illustrate a number of other concepts:

 The requirement to contend with insets when drawing on objects that have borders, such

as Frame objects.

 The use of clipping.

 The use of setColor() to change the current drawing color.

 The use of the dispose() method to return graphics context resources to the operating

system.

We will see two sample programs in the next section. The first program will deal with the insets

problem by adding compensating offset values to coordinates as parameters to method calls. The

second program will avoid the insets problem by overlaying the client area of a Frame object

with a Canvas object for which there are no insets. (A sample program in a later section will

eliminate the insets problem through use of the translate() method.

Also at this point we should say a few words about the use of the dispose() method. Since the

different books seem to have different explanations for the need to dispose of the graphics

contexts that you create, probably the best thing to do is simply to provide the following material

extracted directly from the JavaSoft documentation for JDK 1.1.3

dispose()

Disposes of this graphics context and releases any system resources that it is using. A Graphics

object cannot be used after dispose has been called.

When a Java program runs, a large number of Graphics objects can be created within a short time

frame. Although the finalization process of the garbage collector also disposes of the same

system resources, it is preferable to manually free the associated resources by calling this method

rather than to rely on a finalization process which may not run to completion for a long period of

time.

Graphics objects which are provided as arguments to the paint and update methods of

components are automatically released by the system when those methods return. For efficiency,

programmers should call dispose when finished using a Graphics object only if it was created

directly from a component or another Graphics object.

Sample Programs to Illustrate Creating a new Graphics Object

The idea for the example programs in this section is based on an applet from the book entitled

AWT Reference by John Zukowski. Mr. Zukowski designed his applet to explain the use of

clipping in Java. It was modified here to include insets, color, etc.

The first program illustrates the following graphics concepts:

 Creation of a second reference to a graphics context.

 The requirement to contend with insets when drawing on objects that have borders, such

as Frame objects.

 Drawing rectangles and lines.

 The use of clipping.

 The use of setColor() to change the current drawing color.

 The use of the dispose() method to return graphics context resources to the operating

system.

The paint() method in an extended Frame class is overridden to perform the following tasks in

order:

 Get the left and top insets of a Frame object so that they can be used as arithmetic offsets

later when drawing in the Frame object.

 Set the drawing color to red.

 Create a second reference to the graphics context passed to the paint() method.

 Use the second reference to draw the outline of a red square 100 pixels on each side.

 Set the drawing color for the second reference to blue.

 Clip the drawing area for the second reference to a square 50 pixels on each side centered

in the original square.

 Use the second reference to attempt to draw a blue line from the upper left-hand corner to

the lower right-hand corner of the original rectangle. Only that portion of the line that is

inside the new clipped drawing area will actually be drawn.

 Call the dispose() method to return the resources occupied by the second reference to the

operating system.

 Set the second reference to null so that it will become eligible for garbage collection.

 Use the original graphics context to set the drawing color to green.

 Use the original graphics context to draw a green line from the lower left-hand corner to

the upper right-hand corner of the original red rectangle. This entire line will be visible

because the clipping area does not apply to the original graphics context.

When you compile and run this program, a Frame object will appear on the screen. A red square

will appear in the upper left portion of the client area of the Frame.

A green line will run from the bottom left corner to the upper right corner within the square.

A segment of a blue line will appear as the center portion of an imaginary line that runs from the

top left corner to the lower right corner within the square. This blue line segment is the result of

clipping the line at the boundaries of the clipping area that was applied to the second reference to

the graphics context.

When you press the close button on the Frame object, the program will terminate and control

will be returned to the operating system.

This program was tested using JDK 1.1.3 under Win95.

A complete listing follows with interesting code fragments highlighted in boldface.

/*File Graphics03.java

Copyright 1997, R.G.Baldwin

This program was tested using JDK 1.1.3 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

class Graphics03 extends Frame{ //controlling class

 //Override the paint method

 public void paint(Graphics g){

 int top = this.getInsets().top;//get top inset value

 int left = this.getInsets().left;//get left inset value

 g.setColor(Color.red);

 //Create another reference to the Graphics context g

 Graphics clpArea = g.create();

 //Use original clpArea reference to draw a

 // red rectangle

 clpArea.drawRect(0+left,0+top,100,100);

 clpArea.setColor(Color.blue);

 //Reduce clpArea reference to rectangle shown

 clpArea.clipRect(25+left,25+top,50,50);

 //Use clpArea ref to try to draw a blue diagonal line

 // across the entire original rectangle. Only middle

 // portion actually gets drawn.

 clpArea.drawLine(0+left,0+top,100+left,100+top);

 clpArea.dispose();//free system resources

 clpArea = null;//make eligible for garbage collection

 g.setColor(Color.green);

 //Use the original graphics context to draw a green

 // diagonal line across the entire rectangle.

 g.drawLine(0+left,100+top,100+left,0+top);

 }//end paint()

 public Graphics03(){//constructor

 this.setTitle("Copyright 1997, R.G.Baldwin");

 this.setSize(300,150);

 this.setVisible(true);

 //Anonymous inner-class listener to terminate program

 this.addWindowListener(

 new WindowAdapter(){//anonymous class definition

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program

 }//end windowClosing()

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

 public static void main(String[] args){

 new Graphics03();//instantiate this object

 }//end main

}//end Graphics03 class

//===//

The second program illustrates the use of a Canvas object as the drawing surface in order to

eliminate the insets problem. Otherwise, it is very similar to the first program.

Use of the Canvas object as a drawing surface eliminates the insets problem simply because a

Canvas object doesn't have any borders.

The insets result from the fact that some containers, such as a Frame object, have borders, and

the area covered by the borders is considered to be a part of the drawing surface, insofar as

coordinate values are concerned.

In other words, the 0,0 coordinate position is the upper left-hand corner of the container, outside

the borders if it has borders.

The getInsets() method provides the width in pixels of the four borders which makes it possible

to compensate arithmetically for the borders when working with coordinate values.

In order to be able to use a Canvas object as a drawing surface, it is necessary to extend the

Canvas class so that the paint() method can be overridden. In the following program, the

Canvas class was extended into a new class named MyClass where the paint() method was

overridden to perform the graphics operations.

An object of the MyCanvas class was instantiated, made yellow, and added to the Frame object

in such a way as to cover the entire client area of the Frame object and act as a drawing surface

on top of the Frame object. Since the MyCanvas object has no borders, the insets problem was

eliminated.

As with the first program, the idea for this program was based on an applet from the book

entitled AWT Reference by John Zukowski.

A complete listing of the program follows with interesting code fragments highlighted in

boldface.

/*File Graphics04.java

Copyright 1997, R.G.Baldwin

This sample program replicates the functionality of the

program named Graphics03. However, it was modified to

eliminate the nuisance of having to contend with insets

when drawing on a Frame object.

The requirement to contend with insets was eliminated by

adding a Canvas object to the Frame object and drawing on

the Canvas object instead of on the Frame object. A

Canvas object doesn't have borders, so there are no insets

to contend with.

This program was tested using JDK 1.1.3 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

//Extend Canvas in order to make it possible to override

// the paint() method.

class MyCanvas extends Canvas{

 //Override the paint method

 public void paint(Graphics g){

 g.setColor(Color.red);

 //Create another reference to the Graphics context g

 Graphics clpArea = g.create();

 //Use original clpArea reference to draw a

 // red rectangle

 clpArea.drawRect(0,0,100,100);

 clpArea.setColor(Color.blue);

 //Reduce clpArea reference to rectangle shown

 clpArea.clipRect(25,25,50,50);

 //Use clpArea ref to try to draw a blue diagonal line

 // across the entire original rectangle. Only middle

 // portion actually gets drawn.

 clpArea.drawLine(0,0,100,100);

 clpArea.dispose();//free system resources

 clpArea = null;//make eligible for garbage collection

 g.setColor(Color.green);

 //Use the original graphics context to draw a green

 // diagonal line across the entire rectangle.

 g.drawLine(0,100,100,0);

 }//end paint()

}//end class MyCanvas

//===//

class Graphics04 extends Frame{ //controlling class

 public Graphics04(){//constructor

 this.setTitle("Copyright 1997, R.G.Baldwin");

 this.setSize(300,150);

 //Create a yellow drawing surface and use it to cover

 // the client area of the Frame object.

 MyCanvas myDrawingSurface = new MyCanvas();

 myDrawingSurface.setBackground(Color.yellow);

 this.add(myDrawingSurface);

 this.setVisible(true);

 //Anonymous inner-class listener to terminate program

 this.addWindowListener(

 new WindowAdapter(){//anonymous class definition

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program

 }//end windowClosing()

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

 public static void main(String[] args){

 new Graphics04();//instantiate this object

 }//end main

}//end Graphics04 class

//===//

Using the translate() Method

The translate(int x, int y) method translates the origin of the graphics context to the point (x, y)

in the current coordinate system. The method modifies the graphics context so that its new origin

corresponds to the point (x, y) in this graphics context's original coordinate system.

All coordinates used in subsequent rendering operations on the graphics context (or a copy or

second reference to the graphics context made after the translation takes place) will be relative to

the new origin.

Sample Program to Illustrate Use of the translate() Method

The translate() method provides another useful way to eliminate the insets problem. In

particular, the method can be used to translate the origin of the graphics context to the upper left-

hand corner of the client area of the Frame object (inside the borders).

The following program replicates the functionality of the program named Graphics03. However,

it eliminates the problem of insets by invoking the translate() method on the original graphics

context to shift the origin to the upper left- hand corner of the the client area of the Frame object

(inside the borders).

The program illustrates the same concepts as previous programs, and in addition illustrates the

use of the translate() method to shift the 0,0 coordinate position to a different spot on the

graphics context.

Minimal changes were required to the original program named Graphics03 to implement this

solution to the insets problem. Those changes are highlighted in boldface in the program listing

that follows.

/*File Graphics05.java

Copyright 1997, R.G.Baldwin

This program was tested using JDK 1.1.3 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

class Graphics05 extends Frame{ //controlling class

 //Override the paint method

 public void paint(Graphics g){

 g.setColor(Color.red);

 //Translate the 0,0 coordinate of the graphics context

 // to the upper left-hand corner of the client area of

 // the Frame object.

 g.translate(

 this.getInsets().left,this.getInsets().top);

 //Create another reference to the Graphics context g

 Graphics clpArea = g.create();

 //Use original clpArea reference to draw a

 // red rectangle

 clpArea.drawRect(0,0,100,100);

 clpArea.setColor(Color.blue);

 //Reduce clpArea reference to rectangle shown

 clpArea.clipRect(25,25,50,50);

 //Use clpArea ref to try to draw a blue diagonal line

 // across the entire original rectangle. Only middle

 // portion actually gets drawn.

 clpArea.drawLine(0,0,100,100);

 clpArea.dispose();//free system resources

 clpArea = null;//make eligible for garbage collection

 g.setColor(Color.green);

 //Use the original graphics context to draw a green

 // diagonal line across the entire rectangle.

 g.drawLine(0,100,100,0);

 }//end paint()

 public Graphics05(){//constructor

 this.setTitle("Copyright 1997, R.G.Baldwin");

 this.setSize(300,150);

 this.setVisible(true);

 //Anonymous inner-class listener to terminate program

 this.addWindowListener(

 new WindowAdapter(){//anonymous class definition

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program

 }//end windowClosing()

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

 public static void main(String[] args){

 new Graphics05();//instantiate this object

 }//end main

}//end Graphics05 class

//===//

.

XOR Mode vs Paint Mode

This section of this lesson explains "how to do it" and not "why to do it". If you don't already

know that you need to render your drawing in XOR (exclusive or) mode, you probably don't

need to render it in XOR mode.

The Paint mode that results from invoking the setPaintMode() method is easy to explain. Each

new pixel that you render simply replaces the existing pixel with the color of the new pixel.

However, the XOR mode that results from invoking the setXORMode() method is much more

complex and requires an explanation.

In this section, we will look at some specific examples of performing an exclusive or on selected

bit patterns. The results will be important in understanding the programming example in the next

section.

The rules for the determining the exclusive or of two bits are shown in the following box:

0 or 0 = 0

1 or 0 = 1

0 or 1 = 1

1 or 1 = 0

In other words, if either but not both of the bits is a 1, the output is a 1. Otherwise, the output is a

0.

The following box shows the bit patterns for the 24 bits that comprise the color portion of four

different Java RGB color values (the remaining eight bits are not shown).

111111110000000000000000 = red

000000001111111100000000 = green

000000000000000011111111 = blue

111111111111111111111111 = white

When you invoke the setXORMode(Color altColor) method, the color for each pixel that is

rendered thereafter is determined by the XOR of three color values:

 the current drawing color,

 the altColor value passed as a parameter to the setXORMode() mode, and

 the current color of the pixel.

Consider the following XOR example of rendering a new red pixel on an existing red pixel

where the XOR altColor value has been set to green. The three color values are shown below

along with the intermediate and final XOR of the three.

111111110000000000000000 = red

111111110000000000000000 = red

000000000000000000000000 = intermediate result

000000001111111100000000 = green

000000001111111100000000 = final result which is green

As you can see, the XOR Mode result of drawing red on red produces the value of the third

color which in this case is the altColor value passed to the setXORMode() method.

Thus, if we are in XOR Mode and draw red on red, the actual color rendered will be the color

that was passed to the setXORMode() method when it was invoked. This will be true when

drawing any color on top of the same color.

Now consider the following XOR example of rendering a red pixel on a white pixel where the

XOR altColor value has been set to green. The three color values are shown below along with

the intermediate and final XOR of the three.

111111110000000000000000 = red

111111111111111111111111 = white

000000001111111111111111 = intermediate result

000000001111111100000000 = green

000000000000000011111111 = final result which is blue

As you can see, the XOR of red, white, and green produces the color value for blue. Using this

scheme, you should be able to determine the numeric value of the color value that will be

produced for the XOR of any three colors.

One of the reasons for using XOR rendering is the fact that when a figure is redrawn on itself in

XOR mode, the result is to erase the figure and restore the background to its state prior to the

drawing of the figure in the first place. This is true even for multi-colored backgrounds. This is

sometimes used in animation processes as a way to draw and erase a figure very quickly. With

this concept in mind, consider the process of performing the same XOR two times in succession.

Use the red-red-green case as an example.

111111110000000000000000 = red

111111110000000000000000 = red

000000000000000000000000 = intermediate result

000000001111111100000000 = green

000000001111111100000000 = final result which is green

Now starting with green, XOR the same red pixel

000000001111111100000000 = green

111111110000000000000000 = red

111111111111111100000000 = intermediate result

000000001111111100000000 = green

111111110000000000000000 = red which is the original color of the pixel

As you can see, the final color of the pixel is the same that it was before the new pixel color was

rendered twice in succession. This is as we would expect based on the previous discussion of the

figure erasing itself on the second rendering in XOR mode.

Sample Program to Illustrate use of XOR and Paint Modes

This section contains a sample program that matches the XOR bit-pattern examples given above.

This program illustrates the use of setXORMode() and setPaintMode(). It shows the result of

overlapping drawings in both modes. It also shows the result of redrawing a figure that was

originally drawn in XOR mode.

It is strongly recommended that you compile and run this program because you will probably

need to see the display to understand the following description.

This program draws two sets of four overlapping filled squares at different locations on the

screen with a drawing color of red. The current drawing color is not changed during the entire

sequence of drawing squares.

For both sets, the first two overlapping squares are drawn in the default Paint mode. This

produces two red squares which overlap and merge in the overlapping area. Except for the fact

that you know they are squares (because I told you so), it is not possible to discern the shape of

the overlapping area. If they were overlapping polygons, for example, you would not be able to

discern the shape of the overlapping area.

Then the mode is changed to XOR with an XOR altColor value of green and a third

overlapping square is drawn with the current drawing color being red.

In this case, the overlap between the two squares is green. (You should have expected this based

on the discussion in the previous section.) Thus, it is now possible to discern the shape of of the

overlapping area.

In addition, that portion of the square that doesn't overlap the red square but is drawn on the

white background is rendered in blue. (Again, you should have expected this on the basis of the

discussion in the previous section.)

Then the mode is reset to Paint and a fourth overlapping square is drawn. It simply overdraws

the blue square with red in the intersecting area as would be expected for the Paint mode.

To demonstrate the manner in which drawing the same figure twice in the XOR mode causes it

to be erased, the same sequence is repeated again in a location further to the right on the screen.

However, in this case, after all four squares have been drawn, the mode is set to XOR and

another square is drawn in the exact location of the third square in the sequence (the one

previously drawn in XOR mode). In other words, the third square is redrawn in XOR mode.

This causes the green and blue portions of that square to be replaced by red and white,

effectively erasing the square and returning the display to its original form (as you should

expect).

However, that portion of the third square that was previously overlapped by the fourth square

(causing it to be red instead of blue), was rendered as green because the fourth square wasn't

there when the third square was originally drawn. Therefore, redrawing it causes the redrawn

square to overlap the fourth square and produce the green overlap area.

A program listing follows. Interesting code fragments are highlighted in boldface.

/*File Graphics06.java

Copyright 1997, R.G.Baldwin

This program was tested using JDK 1.1.3 under Win95.

**/

import java.awt.*;

import java.awt.event.*;

class Graphics06 extends Frame{ //controlling class

 //Override the paint method

 public void paint(Graphics g){

 g.setColor(Color.red);

 //Translate the 0,0 coordinate of the graphics context

 // to the upper left-hand corner of the client area of

 // the Frame object.

 g.translate(

 this.getInsets().left,this.getInsets().top);

 //Draw first set of four overlapping filled red

 // squares. Start drawing in the default Paint mode.

 g.fillRect(0,0,50,50);

 g.fillRect(25,25,50,50);

 //Set to XOR mode and draw another overlapping square

 // with the drawing color set to red and the XOR color

 // set to green. This will produce a square that is

 // green where it overlaps a red square and is blue

 // where it doesn't overlap the red square but is

 // being drawn on the white background.

 g.setXORMode(Color.green);

 g.fillRect(50,50,50,50);

 //Reset to default Paint mode and draw another

 // overlapping square. This will simply draw a red

 // square covering part of the blue square and covering

 // the white background

 g.setPaintMode();

 g.fillRect(75,75,50,50);

 //Now demonstrate the cancelling effect of redrawing

 // a square in XOR mode.

 //Draw second set of four overlapping filled red

 // squares exactly as before but at a different

 // location on the screen.

 g.fillRect(200,0,50,50);

 g.fillRect(225,25,50,50);

 g.setXORMode(Color.green);

 g.fillRect(250,50,50,50);

 g.setPaintMode();

 g.fillRect(275,75,50,50);

 //***Important concept demonstrated here ***

 //Now redraw the third square in the second set

 // in XOR mode. This will erase the one originally

 // drawn except where it overlaps the fourth square.

 // That overlap will be green.

 g.setXORMode(Color.green);

 g.fillRect(250,50,50,50);

 }//end paint()

 public Graphics06(){//constructor

 this.setTitle("Copyright 1997, R.G.Baldwin");

 this.setSize(350,200);

 this.setVisible(true);

 //Anonymous inner-class listener to terminate program

 this.addWindowListener(

 new WindowAdapter(){//anonymous class definition

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program

 }//end windowClosing()

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

 public static void main(String[] args){

 new Graphics06();//instantiate this object

 }//end main

}//end Graphics06 class

//===//

Summary

This lesson has explained and illustrated the use of the following methods from the original list

of Graphics utility methods given at the beginning of the lesson:

 clearRect(int, int, int, int)

 copyArea(int, int, int, int, int, int)

 create()

 dispose()

 setColor(Color)

 translate(int, int)

 setPaintMode()

 setXORMode(Color)

We did not illustrate or explain the use of the following methods:

 toString()

 getColor()

 finalize()

The toString() method is simply overridden to return a String object that describes a Graphics

object. We have seen many examples of the overridden toString() method in earlier lessons.

The getColor() method is the flip side of the setColor() method and should not be difficult for

you to understand on your own.

The finalize() method is overridden to dispose of the Graphics object prior to garbage

collection. However, as explained above, you should manually dispose of the Graphics objects

that you create and not wait for finalization to take place.

-end-

